{"title":"Processing Carbon Dioxide Into Ethanol Based on Thermal Energy Supported by Solar Energy","authors":"U. Das, T. H. Dar, C. Nandi","doi":"10.1134/S0040601524700770","DOIUrl":null,"url":null,"abstract":"<p>The thermal power plant recognized as the most pollutants emitted power plant in the world. The use of the solar systems is essential for reducing carbon emissions from thermal power plants. Such hybrid systems need a skillful energy management technology as well as incorporation of carbon conversion technology that will help to run the system expertly to maintain the power generation-demand balance and make the thermal plant more cleaner than before respectively. This work describes a fuzzy logic-based energy management system for a thermal-solar hybrid system and a carbon conversion technology to convert the captured carbon into the chemical products after calculating the environmental impact of a stand-alone thermal power plant through life cycle assessment (LCA) tool. The results of a case study demonstrate that the suggested schemes are feasible, effective and environmentally acceptable. Thermal-solar-based hybrid power plant can work environmentally harmlessly if the carbon produced from the plant is converted into the chemical product.</p>","PeriodicalId":799,"journal":{"name":"Thermal Engineering","volume":"72 2","pages":"144 - 156"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S0040601524700770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The thermal power plant recognized as the most pollutants emitted power plant in the world. The use of the solar systems is essential for reducing carbon emissions from thermal power plants. Such hybrid systems need a skillful energy management technology as well as incorporation of carbon conversion technology that will help to run the system expertly to maintain the power generation-demand balance and make the thermal plant more cleaner than before respectively. This work describes a fuzzy logic-based energy management system for a thermal-solar hybrid system and a carbon conversion technology to convert the captured carbon into the chemical products after calculating the environmental impact of a stand-alone thermal power plant through life cycle assessment (LCA) tool. The results of a case study demonstrate that the suggested schemes are feasible, effective and environmentally acceptable. Thermal-solar-based hybrid power plant can work environmentally harmlessly if the carbon produced from the plant is converted into the chemical product.