Allosteric modulation of laeviganoid-based clerodane diterpenes derivatives in muscarinic acetylcholine M1 receptor against tinnitus: a structure-based virtual screening approach

IF 3.4 Q2 PHARMACOLOGY & PHARMACY Future Journal of Pharmaceutical Sciences Pub Date : 2025-03-11 DOI:10.1186/s43094-025-00783-w
Jacilene Silva, Matheus Nunes da Rocha, Victor Moreira de Oliveira, Caio Henrique Alexandre Roberto, Francisco Nithael Melo Lúcio, Márcia Machado Marinho, Hélcio Silva dos Santos, Emmanuel Silva Marinho
{"title":"Allosteric modulation of laeviganoid-based clerodane diterpenes derivatives in muscarinic acetylcholine M1 receptor against tinnitus: a structure-based virtual screening approach","authors":"Jacilene Silva,&nbsp;Matheus Nunes da Rocha,&nbsp;Victor Moreira de Oliveira,&nbsp;Caio Henrique Alexandre Roberto,&nbsp;Francisco Nithael Melo Lúcio,&nbsp;Márcia Machado Marinho,&nbsp;Hélcio Silva dos Santos,&nbsp;Emmanuel Silva Marinho","doi":"10.1186/s43094-025-00783-w","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Chronic tinnitus is a complication that affects the central nervous system, specifically the auditory cortex, causing a phantom perception of sounds and noises without any external acoustic stimulus. It is more frequent in men than in women and can be caused by excessive exposure to auditory stimuli. The main modulator of auditory functions, particularly in terms of neuroplasticity in the auditory system, is the M1 muscarinic acetylcholine receptor (mAChR M1). In the literature, natural oxygenated heterocyclic compounds have been used to develop drugs that act on the central nervous system (CNS), including clerodane diterpenes. The aim of this study was to evaluate the modulatory action of a series of naturally occurring clerodane diterpenes against chronic tinnitus.</p><h3>Results</h3><p>The structure-based virtual screening revealed that Laeviganoid derivatives L1-8 share structural similarities with other oxygenated heterocyclic compounds that modulate mAChR M1. The prediction of pharmacokinetic properties highlighted the L4 derivative as a potential candidate for distribution in the CNS due to its high cell permeability (P<sub>app,A→B</sub> = 1.9 × 10<sup>−5</sup> cm/s) and metabolic stability. Molecular docking simulations indicate that the ligand interacts with the active site of mAChR M1 through hydrophobic interactions with residues Tyr106, Trp378, Tyr381 and Tyr404, with an affinity energy of approximately − 8.7 kcal/mol. Molecular dynamics simulations have shown that the L4/M1 complex is stable as a function of time (200 ns).</p><h3>Conclusion</h3><p>The in silico results suggest that the L4 can perform allosteric modulation of mAChR M1 in the treatment of tinnitus, as it can bind to the same interaction site as the tiotropium.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00783-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-025-00783-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Chronic tinnitus is a complication that affects the central nervous system, specifically the auditory cortex, causing a phantom perception of sounds and noises without any external acoustic stimulus. It is more frequent in men than in women and can be caused by excessive exposure to auditory stimuli. The main modulator of auditory functions, particularly in terms of neuroplasticity in the auditory system, is the M1 muscarinic acetylcholine receptor (mAChR M1). In the literature, natural oxygenated heterocyclic compounds have been used to develop drugs that act on the central nervous system (CNS), including clerodane diterpenes. The aim of this study was to evaluate the modulatory action of a series of naturally occurring clerodane diterpenes against chronic tinnitus.

Results

The structure-based virtual screening revealed that Laeviganoid derivatives L1-8 share structural similarities with other oxygenated heterocyclic compounds that modulate mAChR M1. The prediction of pharmacokinetic properties highlighted the L4 derivative as a potential candidate for distribution in the CNS due to its high cell permeability (Papp,A→B = 1.9 × 10−5 cm/s) and metabolic stability. Molecular docking simulations indicate that the ligand interacts with the active site of mAChR M1 through hydrophobic interactions with residues Tyr106, Trp378, Tyr381 and Tyr404, with an affinity energy of approximately − 8.7 kcal/mol. Molecular dynamics simulations have shown that the L4/M1 complex is stable as a function of time (200 ns).

Conclusion

The in silico results suggest that the L4 can perform allosteric modulation of mAChR M1 in the treatment of tinnitus, as it can bind to the same interaction site as the tiotropium.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
44
审稿时长
23 weeks
期刊介绍: Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.
期刊最新文献
Unveiling metabolome heterogeneity in three species from Coccoloba and Ruprechtia through multiple approaches of UPLC/HRMS and chemometric analysis in relation to antidiabetic, antioxidant and antiglycation activities Therapeutic potential of ursolic acid (UA) and their derivatives with nanoformulations to combat nosocomial pathogens Allosteric modulation of laeviganoid-based clerodane diterpenes derivatives in muscarinic acetylcholine M1 receptor against tinnitus: a structure-based virtual screening approach Repurposing the antimalarial chloroquine: a potential therapy for hepatic injury in a rat model of hindlimb ischemia–reperfusion by modulating apoptosis, autophagy, inflammation, and oxidative stress Revealing the anti-senescence effects and related mechanisms of flavonoid extracts from the buds of Wikstroemia chamaedaphne Meisn on D-galactose-induced PC12 cells based on network pharmacology and transcriptomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1