Wei Bian, Qiyue Wang, Cui He, Pan Tao, Juanjuan Zheng, Yulu Zhang, Jing Li, Fangyuan Li, Hongyan Jia, Daishun Ling
{"title":"A Real-Time Cell Death Self-Reporting Theranostic Agent for Dynamic Optimization of Photodynamic Therapy.","authors":"Wei Bian, Qiyue Wang, Cui He, Pan Tao, Juanjuan Zheng, Yulu Zhang, Jing Li, Fangyuan Li, Hongyan Jia, Daishun Ling","doi":"10.1002/advs.202417678","DOIUrl":null,"url":null,"abstract":"<p><p>The therapeutic efficiency of photodynamic therapy (PDT) hinges on the drug-light interval (DLI), yet conventional approaches relying on photosensitizer accumulation often lead to suboptimal irradiation and adverse side effects. Here, a real-time cell death self-reporting photodynamic theranostic nanoagent (CDPN) is presented that dynamically monitors extracellular potassium ion ([K⁺]<sub>ex</sub>) fluctuations as direct indicators of tumor cell death. By exploiting [K⁺]<sub>ex</sub> dyshomeostasis associated with apoptosis and necrosis, CDPN combines a photosensitizer and a potassium-sensitive fluorophore within mesoporous silica nanoparticles, encapsulated by a K⁺-selective membrane for enhanced specificity. In vitro and in vivo studies validate that [K⁺]<sub>ex</sub> dynamics closely correlate with cell death, enabling precise evaluation of PDT efficacy and data-driven optimization of the DLI. Using a breast cancer model, CDPN-guided adjustments identify optimized DLI conditions, achieving significantly improved therapeutic outcomes. This study introduces a new paradigm for PDT, establishing a real-time, adaptable strategy for guiding treatment parameters and advancing precision oncology.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2417678"},"PeriodicalIF":14.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202417678","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The therapeutic efficiency of photodynamic therapy (PDT) hinges on the drug-light interval (DLI), yet conventional approaches relying on photosensitizer accumulation often lead to suboptimal irradiation and adverse side effects. Here, a real-time cell death self-reporting photodynamic theranostic nanoagent (CDPN) is presented that dynamically monitors extracellular potassium ion ([K⁺]ex) fluctuations as direct indicators of tumor cell death. By exploiting [K⁺]ex dyshomeostasis associated with apoptosis and necrosis, CDPN combines a photosensitizer and a potassium-sensitive fluorophore within mesoporous silica nanoparticles, encapsulated by a K⁺-selective membrane for enhanced specificity. In vitro and in vivo studies validate that [K⁺]ex dynamics closely correlate with cell death, enabling precise evaluation of PDT efficacy and data-driven optimization of the DLI. Using a breast cancer model, CDPN-guided adjustments identify optimized DLI conditions, achieving significantly improved therapeutic outcomes. This study introduces a new paradigm for PDT, establishing a real-time, adaptable strategy for guiding treatment parameters and advancing precision oncology.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.