Denosumab discontinuation in the clinic: implications of rebound bone turnover and emerging strategies to prevent bone loss and fractures.

IF 5.1 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Bone and Mineral Research Pub Date : 2025-03-09 DOI:10.1093/jbmr/zjaf037
Shejil Kumar, Mawson Wang, Albert S Kim, Jacqueline R Center, Michelle M Mcdonald, Christian M Girgis
{"title":"Denosumab discontinuation in the clinic: implications of rebound bone turnover and emerging strategies to prevent bone loss and fractures.","authors":"Shejil Kumar, Mawson Wang, Albert S Kim, Jacqueline R Center, Michelle M Mcdonald, Christian M Girgis","doi":"10.1093/jbmr/zjaf037","DOIUrl":null,"url":null,"abstract":"<p><p>Denosumab is a highly effective treatment for osteoporosis, and its long-term use is associated with incremental gains in bone mineral density (BMD) and sustained fracture risk reduction. Stopping denosumab, however, results in rebound increase in bone turnover, loss of treatment-associated BMD gains, and in the worst case, spontaneous vertebral fractures (VFs). Insights into the risk factors and the underlying mechanisms for rebound-associated bone loss and true incidence of rebound VFs are emerging. Conventional strategies using bisphosphonates to mitigate post-denosumab rebound display mixed success. Bisphosphonates may preserve bone density following short-term denosumab but the optimal sequential approach after longer-term denosumab remains elusive. Patients at particular risk of are those with prevalent VFs or greater on-treatment BMD gains. To greater understand these risks and strategies to preserve bone after denosumab, an emerging body of translational and pre-clinical work is shedding new light on the biology of RANKL inhibition and withdrawal. Discovering an effective \"exit strategy\" to control rebound bone turnover and avoid bone loss after denosumab will improve confidence amongst patients and clinicians in this highly effective and otherwise safe treatment for osteoporosis. This perspective characterizes the clinical problem of post-denosumab rebound, provides a comprehensive update on human studies examining the use of bisphosphonates following denosumab and explores mechanistic insights from pre-clinical studies that will be critical in the design of definitive human trials.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjaf037","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Denosumab is a highly effective treatment for osteoporosis, and its long-term use is associated with incremental gains in bone mineral density (BMD) and sustained fracture risk reduction. Stopping denosumab, however, results in rebound increase in bone turnover, loss of treatment-associated BMD gains, and in the worst case, spontaneous vertebral fractures (VFs). Insights into the risk factors and the underlying mechanisms for rebound-associated bone loss and true incidence of rebound VFs are emerging. Conventional strategies using bisphosphonates to mitigate post-denosumab rebound display mixed success. Bisphosphonates may preserve bone density following short-term denosumab but the optimal sequential approach after longer-term denosumab remains elusive. Patients at particular risk of are those with prevalent VFs or greater on-treatment BMD gains. To greater understand these risks and strategies to preserve bone after denosumab, an emerging body of translational and pre-clinical work is shedding new light on the biology of RANKL inhibition and withdrawal. Discovering an effective "exit strategy" to control rebound bone turnover and avoid bone loss after denosumab will improve confidence amongst patients and clinicians in this highly effective and otherwise safe treatment for osteoporosis. This perspective characterizes the clinical problem of post-denosumab rebound, provides a comprehensive update on human studies examining the use of bisphosphonates following denosumab and explores mechanistic insights from pre-clinical studies that will be critical in the design of definitive human trials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bone and Mineral Research
Journal of Bone and Mineral Research 医学-内分泌学与代谢
CiteScore
11.30
自引率
6.50%
发文量
257
审稿时长
2 months
期刊介绍: The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.
期刊最新文献
Heme metabolism mediates RANKL-induced osteoclastogenesis via mitochondrial oxidative phosphorylation. Brittle, but not boring: a fresh look at osteogenesis imperfecta type V. Control of alveolar bone development, homeostasis, and socket healing by salt inducible kinases. Denosumab discontinuation in the clinic: implications of rebound bone turnover and emerging strategies to prevent bone loss and fractures. Response to letter to the editor of JBMR: sequential Osteoanabolic therapy for osteoporosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1