Bruno Pandalone, Deepak Raikwar, Walter Vermeiren, Louis Beauté, Bert F Sels, Thuan Anh Vo
{"title":"Optimum Lignin Oil - Finding the most suitable feedstock to replace cycloalkanes in Sustainable Aviation Fuel (SAF).","authors":"Bruno Pandalone, Deepak Raikwar, Walter Vermeiren, Louis Beauté, Bert F Sels, Thuan Anh Vo","doi":"10.1002/cssc.202402531","DOIUrl":null,"url":null,"abstract":"<p><p>This study highlights the effectiveness of hydrodeoxygenation (HDO) in converting lignin oils from Eucalyptus, Poplar, and Pine wood, derived from reductive catalytic fractionation (RCF), into renewable cycloalkanes for jet fuel. Using a low-cost Ni2P/SiO2 catalyst, the process achieved yields of 91 %, 83 %, and 75 % of renewable cycloalkanes respectively. In addition, the process exhibited high selectivity towards a specific range of hydrocarbons mostly present in aviation fuel (C9 to C15), with values of 70%, 60% and 62% for the three feedstocks, respectively, showcasing the potential for high-value fuel production. The research underscores the importance of modifying lignin oil properties through various chemo-catalytic biorefining pathways, which significantly influence the quality of the produced blend via HDO. These findings provide valuable insights into optimizing feedstock characteristics for improved jet-range hydrocarbon production.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402531"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402531","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study highlights the effectiveness of hydrodeoxygenation (HDO) in converting lignin oils from Eucalyptus, Poplar, and Pine wood, derived from reductive catalytic fractionation (RCF), into renewable cycloalkanes for jet fuel. Using a low-cost Ni2P/SiO2 catalyst, the process achieved yields of 91 %, 83 %, and 75 % of renewable cycloalkanes respectively. In addition, the process exhibited high selectivity towards a specific range of hydrocarbons mostly present in aviation fuel (C9 to C15), with values of 70%, 60% and 62% for the three feedstocks, respectively, showcasing the potential for high-value fuel production. The research underscores the importance of modifying lignin oil properties through various chemo-catalytic biorefining pathways, which significantly influence the quality of the produced blend via HDO. These findings provide valuable insights into optimizing feedstock characteristics for improved jet-range hydrocarbon production.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology