Network Localization of Pediatric Lesion-Induced Dystonia.

IF 8.1 1区 医学 Q1 CLINICAL NEUROLOGY Annals of Neurology Pub Date : 2025-03-10 DOI:10.1002/ana.27224
Rose Gelineau-Morel, Nomazulu Dlamini, Joel Bruss, Alexander L Cohen, Amanda Robertson, Dimitrios Alexopoulos, Christopher D Smyser, Aaron D Boes
{"title":"Network Localization of Pediatric Lesion-Induced Dystonia.","authors":"Rose Gelineau-Morel, Nomazulu Dlamini, Joel Bruss, Alexander L Cohen, Amanda Robertson, Dimitrios Alexopoulos, Christopher D Smyser, Aaron D Boes","doi":"10.1002/ana.27224","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Dystonia is a movement disorder defined by involuntary muscle contractions leading to abnormal postures or twisting and repetitive movements. Classically dystonia has been thought of as a disorder of the basal ganglia, but newer results in idiopathic dystonia and lesion-induced dystonia in adults point to broader motor network dysfunction spanning the basal ganglia, cerebellum, premotor cortex, sensorimotor, and frontoparietal regions. It is unclear whether a similar network is shared between different etiologies of pediatric lesion-induced dystonia.</p><p><strong>Methods: </strong>Three cohorts of pediatric patients with lesion-induced dystonia were identified. The lesion etiologies included hypoxia, kernicterus, and stroke versus comparison subjects with acquired lesions not associated with dystonia. Multivariate lesion-symptom mapping and lesion network mapping were used to evaluate the anatomy and networks associated with dystonia.</p><p><strong>Results: </strong>Multivariate lesion-symptom mapping showed that lesions of the putamen and globus pallidus were associated with dystonia (r = 0.41, p < 0.001). Lesion network mapping using normative connectome data from healthy children demonstrated that these regional findings occurred within a common brain-wide network that involves the basal ganglia, anterior and medial cerebellum, and cortical regions that overlap the cingulo-opercular action-mode and somato-cognitive-action networks.</p><p><strong>Interpretation: </strong>We interpret these findings as novel evidence for a unified dystonia brain network that involves the somato-cognitive-action network, which is implicated in the coordination of movement. Elucidation of this network gives insight into the functional origins of dystonia and provides novel targets to investigate for therapeutic intervention. ANN NEUROL 2025.</p>","PeriodicalId":127,"journal":{"name":"Annals of Neurology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ana.27224","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Dystonia is a movement disorder defined by involuntary muscle contractions leading to abnormal postures or twisting and repetitive movements. Classically dystonia has been thought of as a disorder of the basal ganglia, but newer results in idiopathic dystonia and lesion-induced dystonia in adults point to broader motor network dysfunction spanning the basal ganglia, cerebellum, premotor cortex, sensorimotor, and frontoparietal regions. It is unclear whether a similar network is shared between different etiologies of pediatric lesion-induced dystonia.

Methods: Three cohorts of pediatric patients with lesion-induced dystonia were identified. The lesion etiologies included hypoxia, kernicterus, and stroke versus comparison subjects with acquired lesions not associated with dystonia. Multivariate lesion-symptom mapping and lesion network mapping were used to evaluate the anatomy and networks associated with dystonia.

Results: Multivariate lesion-symptom mapping showed that lesions of the putamen and globus pallidus were associated with dystonia (r = 0.41, p < 0.001). Lesion network mapping using normative connectome data from healthy children demonstrated that these regional findings occurred within a common brain-wide network that involves the basal ganglia, anterior and medial cerebellum, and cortical regions that overlap the cingulo-opercular action-mode and somato-cognitive-action networks.

Interpretation: We interpret these findings as novel evidence for a unified dystonia brain network that involves the somato-cognitive-action network, which is implicated in the coordination of movement. Elucidation of this network gives insight into the functional origins of dystonia and provides novel targets to investigate for therapeutic intervention. ANN NEUROL 2025.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Neurology
Annals of Neurology 医学-临床神经学
CiteScore
18.00
自引率
1.80%
发文量
270
审稿时长
3-8 weeks
期刊介绍: Annals of Neurology publishes original articles with potential for high impact in understanding the pathogenesis, clinical and laboratory features, diagnosis, treatment, outcomes and science underlying diseases of the human nervous system. Articles should ideally be of broad interest to the academic neurological community rather than solely to subspecialists in a particular field. Studies involving experimental model system, including those in cell and organ cultures and animals, of direct translational relevance to the understanding of neurological disease are also encouraged.
期刊最新文献
Cerebral Edema Progression and Outcomes in Large Infarct Patients Undergoing Endovascular Thrombectomy. Track Sign Distal to Internal Carotid Artery Occlusion. Network Localization of Pediatric Lesion-Induced Dystonia. Issue Information Annals of Neurology: Volume 97, Number 4, April 2025
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1