Antiadhesive and Antibacterial Coatings for Short-Term Titanium Implants

IF 4.3 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2025-03-08 DOI:10.1002/marc.202400989
Fiona Wiesner, Karl G. M. Schönewald, Kira Vogel, Niklas Jung, Barbara Schwierz, Maren Kipping, Aliia Ibragimova, Joshua Schumacher, Christian Pritzel, Clinton R. V. Thiagarajan, Ulrike Ritz, Ulrich Jonas
{"title":"Antiadhesive and Antibacterial Coatings for Short-Term Titanium Implants","authors":"Fiona Wiesner,&nbsp;Karl G. M. Schönewald,&nbsp;Kira Vogel,&nbsp;Niklas Jung,&nbsp;Barbara Schwierz,&nbsp;Maren Kipping,&nbsp;Aliia Ibragimova,&nbsp;Joshua Schumacher,&nbsp;Christian Pritzel,&nbsp;Clinton R. V. Thiagarajan,&nbsp;Ulrike Ritz,&nbsp;Ulrich Jonas","doi":"10.1002/marc.202400989","DOIUrl":null,"url":null,"abstract":"<p>This study presents a novel approach for the development of antifouling and antibacterial hydrogel coatings for short-term titanium implants to treat bone defects. Such implants provide temporary stabilization during bone healing and are intended to be explanted within a period of 12 months. The novel surface modification prevents complications during implant removal, like injury to tissue, nerves, or tendons due to adhesion to the untreated titanium surface. The coatings combine acrylamide-based hydrogels with photocrosslinkers possessing intrinsic antibacterial properties and anchor groups designed for titanium substrates. Comprehensive in vitro evaluations are conducted to assess the biocompatibility and efficacy of these coatings. The results demonstrate that the water-swellable polymer networks effectively prevent cell and tissue adhesion by their antifouling characteristics without inducing cytotoxicity. Importantly, these coatings also exhibit an intrinsic and non-leaching antibacterial effect covalently incorporated into the molecular framework, which addresses the limitations of current implant coating technologies that often rely on the incorporation of antibiotics or bactericidal agents. As the experimental data conclusively verify the effectiveness of the coatings in inhibiting cell adhesion and bacterial colonization, this technology shows great potential to significantly advance the field of short-term titanium implants.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":"46 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/marc.202400989","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/marc.202400989","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel approach for the development of antifouling and antibacterial hydrogel coatings for short-term titanium implants to treat bone defects. Such implants provide temporary stabilization during bone healing and are intended to be explanted within a period of 12 months. The novel surface modification prevents complications during implant removal, like injury to tissue, nerves, or tendons due to adhesion to the untreated titanium surface. The coatings combine acrylamide-based hydrogels with photocrosslinkers possessing intrinsic antibacterial properties and anchor groups designed for titanium substrates. Comprehensive in vitro evaluations are conducted to assess the biocompatibility and efficacy of these coatings. The results demonstrate that the water-swellable polymer networks effectively prevent cell and tissue adhesion by their antifouling characteristics without inducing cytotoxicity. Importantly, these coatings also exhibit an intrinsic and non-leaching antibacterial effect covalently incorporated into the molecular framework, which addresses the limitations of current implant coating technologies that often rely on the incorporation of antibiotics or bactericidal agents. As the experimental data conclusively verify the effectiveness of the coatings in inhibiting cell adhesion and bacterial colonization, this technology shows great potential to significantly advance the field of short-term titanium implants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
短期钛种植体的抗粘剂和抗菌涂层。
本研究为短期钛种植体治疗骨缺损提供了一种新型的防污抗菌水凝胶涂层。这种植入物在骨愈合期间提供暂时的稳定,并打算在12个月内移植。这种新型的表面修饰防止了植入物移除过程中的并发症,如由于未处理的钛表面粘连而对组织、神经或肌腱的损伤。该涂层结合了丙烯酰胺基水凝胶和光交联剂,具有固有的抗菌性能和为钛基设计的锚基团。对这些涂层进行了全面的体外评价,以评估其生物相容性和功效。结果表明,水膨胀聚合物网络通过其防污特性有效地防止细胞和组织的粘附,而不会引起细胞毒性。重要的是,这些涂层还表现出固有的和非浸出的抗菌作用,共价结合到分子框架中,这解决了当前植入物涂层技术的局限性,这些技术通常依赖于抗生素或杀菌剂的结合。由于实验数据最终验证了涂层在抑制细胞粘附和细菌定植方面的有效性,因此该技术在短期钛种植领域具有很大的发展潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
4D Printable Formulations of Mixed Low and High Molecular Weight Liquid Crystalline Units: A Versatile Route to Functional Soft Actuators. Transparent Ionic Skin: Minimal [EMIM]Cl Enhances Nanocellulose Hydrogel Conductivity for Superior Wearable Sensing. Conductive and Self-Adhesive Polyelectrolyte Hydrogel Sensor for Flexible Wearable Devices and Reusable Physiological Electrode. Preparation of Platelet Membrane-Coated Gelatin Nanoparticle Toward Alternative to Platelet Preparation. Self Dilution of Model Polystyrene Pom-Poms and Combs by Unentangled Side Arms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1