Artificial intelligence (AI) in radiological paediatric fracture assessment: an updated systematic review.

IF 4.7 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Radiology Pub Date : 2025-03-10 DOI:10.1007/s00330-025-11449-9
Emily Ashworth, Emma Allan, Cato Pauling, Harsimran Laidlow-Singh, Owen J Arthurs, Susan C Shelmerdine
{"title":"Artificial intelligence (AI) in radiological paediatric fracture assessment: an updated systematic review.","authors":"Emily Ashworth, Emma Allan, Cato Pauling, Harsimran Laidlow-Singh, Owen J Arthurs, Susan C Shelmerdine","doi":"10.1007/s00330-025-11449-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recognising bone injuries in children is a critical part of children's imaging, and, recently, several AI algorithms have been developed for this purpose, both in research and commercial settings. We present an updated systematic review of the literature, including the latest developments.</p><p><strong>Methods/materials: </strong>Scopus, Web of Science, Pubmed, Embase, and Cochrane Library databases were queried for studies published between 1 January 2011 and 6 September 2024 matching search terms 'child', 'AI', 'fracture,' and 'imaging'. Retrieved studies were evaluated, and descriptive statistics were collated for diagnostic performance.</p><p><strong>Results: </strong>Twenty-six eligible articles were included; seventeen (17/26, 65.%) of these were published within the last two years. Six studies (6/26, 23.1%) used open-source datasets to train their algorithm, the remainder used local data. Sixteen studies (16/26, 61.5%) evaluated a single joint (wrist, elbow, or ankle); multiple bones within the appendicular skeleton were assessed in the other ten studies. Seven articles (7/26, 26.9%) related to the performance of a commercial AI tool. Accuracy of AI models ranged from 85.0 to 100.0%. Six studies (6/26, 23.1%) evaluated the accuracy of human readers with and without AI assistance, of which two studies found a statistically significant improvement when humans were assisted by AI. The largest pool of human readers in any paper consisted of 11 readers of varying experience.</p><p><strong>Conclusion: </strong>The pace of research in AI fracture detection in children's imaging has increased. Studies show high accuracy of AI models, but proof of clinical impact, cost-effectiveness, and any socioeconomic or ethical bias are still lacking.</p><p><strong>Key points: </strong>Question AI model development has rapidly increased in recent years. We present the latest developments in AI model diagnostic accuracy for paediatric fracture detection. Findings Studies now demonstrate performance improvement when AI is used to assist human interpretation of paediatric fractures, especially when aiding junior radiologists. Clinical relevance Studies show high accuracy for AI models; however, further research is needed to evaluate AI across diverse age groups, bone diseases, and fracture types. Evidence of real-world patient benefit for AI and any socioeconomic or ethical bias are still lacking.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-025-11449-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Recognising bone injuries in children is a critical part of children's imaging, and, recently, several AI algorithms have been developed for this purpose, both in research and commercial settings. We present an updated systematic review of the literature, including the latest developments.

Methods/materials: Scopus, Web of Science, Pubmed, Embase, and Cochrane Library databases were queried for studies published between 1 January 2011 and 6 September 2024 matching search terms 'child', 'AI', 'fracture,' and 'imaging'. Retrieved studies were evaluated, and descriptive statistics were collated for diagnostic performance.

Results: Twenty-six eligible articles were included; seventeen (17/26, 65.%) of these were published within the last two years. Six studies (6/26, 23.1%) used open-source datasets to train their algorithm, the remainder used local data. Sixteen studies (16/26, 61.5%) evaluated a single joint (wrist, elbow, or ankle); multiple bones within the appendicular skeleton were assessed in the other ten studies. Seven articles (7/26, 26.9%) related to the performance of a commercial AI tool. Accuracy of AI models ranged from 85.0 to 100.0%. Six studies (6/26, 23.1%) evaluated the accuracy of human readers with and without AI assistance, of which two studies found a statistically significant improvement when humans were assisted by AI. The largest pool of human readers in any paper consisted of 11 readers of varying experience.

Conclusion: The pace of research in AI fracture detection in children's imaging has increased. Studies show high accuracy of AI models, but proof of clinical impact, cost-effectiveness, and any socioeconomic or ethical bias are still lacking.

Key points: Question AI model development has rapidly increased in recent years. We present the latest developments in AI model diagnostic accuracy for paediatric fracture detection. Findings Studies now demonstrate performance improvement when AI is used to assist human interpretation of paediatric fractures, especially when aiding junior radiologists. Clinical relevance Studies show high accuracy for AI models; however, further research is needed to evaluate AI across diverse age groups, bone diseases, and fracture types. Evidence of real-world patient benefit for AI and any socioeconomic or ethical bias are still lacking.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Radiology
European Radiology 医学-核医学
CiteScore
11.60
自引率
8.50%
发文量
874
审稿时长
2-4 weeks
期刊介绍: European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field. This is the Journal of the European Society of Radiology, and the official journal of a number of societies. From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.
期刊最新文献
Correction: Spatiotemporal patterns of brain iron-oxygen metabolism in patients with Parkinson's disease. Artificial intelligence (AI) in radiological paediatric fracture assessment: an updated systematic review. Correction: Imaging in pelvic exenteration-a multidisciplinary practice guide from the ESGAR-SAR-ESUR-PelvEx collaborative group. Automated deep learning-assisted early detection of radiation-induced temporal lobe injury on MRI: a multicenter retrospective analysis. Deep learning-based quantification of T2-FLAIR mismatch sign: extending IDH mutation prediction in adult-type diffuse lower-grade glioma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1