Effects of nitrogen fertilizer on protein accumulation in basal-middle and apical kernels of different low nitrogen tolerant maize hybrids.

IF 4.1 2区 生物学 Q1 PLANT SCIENCES Frontiers in Plant Science Pub Date : 2025-02-21 eCollection Date: 2025-01-01 DOI:10.3389/fpls.2025.1526026
Pi-Jiang Yin, Xing-Long Wang, Ya-Wei Wu, Fan Liu, Ye Tao, Qin-Lin Liu, Tian-Qiong Lan, Dong-Ju Feng, Fan-Lei Kong, Ji-Chao Yuan
{"title":"Effects of nitrogen fertilizer on protein accumulation in basal-middle and apical kernels of different low nitrogen tolerant maize hybrids.","authors":"Pi-Jiang Yin, Xing-Long Wang, Ya-Wei Wu, Fan Liu, Ye Tao, Qin-Lin Liu, Tian-Qiong Lan, Dong-Ju Feng, Fan-Lei Kong, Ji-Chao Yuan","doi":"10.3389/fpls.2025.1526026","DOIUrl":null,"url":null,"abstract":"<p><p>Selecting low-nitrogen(N)-tolerant maize hybrids represent an effective approach to enhancing nitrogen use efficiency grain yield. However, the impact of nitrogen fertilization on protein accumulation in low-N-tolerant hybrids remain insufficiently explored. In this paper, a two-year field orientation trial was conducted at four nitrogen fertilizer rate with the different low-N-tolerant maize hybrids. The effect of nitrogen fertilization on the accumulation of protein and its fractions different kernels positions of different low-N-tolerant maize hybrids was studied. The results showed that the protein yield of ZH311 maize kernels was significantly higher than that of XY508, especially under low-N conditions (0N and 150N), and was 25.7%-36.2% higher than that of XY508. There was a significant correlation between protein yield and the accumulation of crude protein and protein fractions. Compared with XY508, the crude protein of ZH311 entered the rapid growth stage later and lasted for a relatively shorter period, but it was 50.8%-53.0% higher due to its higher accumulation rates (v<sub>2</sub> and v<sub>3</sub>) in its middle and late stages, especially in the apical grains. Under low-N conditions, the difference in crude protein accumulation between the apical and basal-middle kernels of ZH311 was only 4.3-8.2%, whereas the difference in XY508 was 29.9-37.3%, suggesting that low-N-tolerant maize hybrids improve protein yield by increasing the accumulation of proteins and their fractions in the apical kernels. Nitrogen fertilization had a greater effect on protein accumulation and yield in XY508, especially on the top kernel and protein yield. In the future, more attention should be paid to the effect of apical kernels when breeding high-quality maize hybrids tolerant to low nitrogen.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1526026"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885128/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1526026","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Selecting low-nitrogen(N)-tolerant maize hybrids represent an effective approach to enhancing nitrogen use efficiency grain yield. However, the impact of nitrogen fertilization on protein accumulation in low-N-tolerant hybrids remain insufficiently explored. In this paper, a two-year field orientation trial was conducted at four nitrogen fertilizer rate with the different low-N-tolerant maize hybrids. The effect of nitrogen fertilization on the accumulation of protein and its fractions different kernels positions of different low-N-tolerant maize hybrids was studied. The results showed that the protein yield of ZH311 maize kernels was significantly higher than that of XY508, especially under low-N conditions (0N and 150N), and was 25.7%-36.2% higher than that of XY508. There was a significant correlation between protein yield and the accumulation of crude protein and protein fractions. Compared with XY508, the crude protein of ZH311 entered the rapid growth stage later and lasted for a relatively shorter period, but it was 50.8%-53.0% higher due to its higher accumulation rates (v2 and v3) in its middle and late stages, especially in the apical grains. Under low-N conditions, the difference in crude protein accumulation between the apical and basal-middle kernels of ZH311 was only 4.3-8.2%, whereas the difference in XY508 was 29.9-37.3%, suggesting that low-N-tolerant maize hybrids improve protein yield by increasing the accumulation of proteins and their fractions in the apical kernels. Nitrogen fertilization had a greater effect on protein accumulation and yield in XY508, especially on the top kernel and protein yield. In the future, more attention should be paid to the effect of apical kernels when breeding high-quality maize hybrids tolerant to low nitrogen.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Plant Science
Frontiers in Plant Science PLANT SCIENCES-
CiteScore
7.30
自引率
14.30%
发文量
4844
审稿时长
14 weeks
期刊介绍: In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches. Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.
期刊最新文献
Integrating AI detection and language models for real-time pest management in Tomato cultivation. Metagenomics-based study of rhizospheric microorganisms of Poa alpigena L. in Qinghai Lake, Ganzi River Plateau. Amorphophallus konjac: traditional uses, bioactive potential, and emerging health applications. Corrigendum: Saturation mapping of a major effect QTL for stripe rust resistance on wheat chromosome 2B in cultivar Napo 63 using SNP genotyping arrays. Effects of nitrogen fertilizer on protein accumulation in basal-middle and apical kernels of different low nitrogen tolerant maize hybrids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1