Unconventional mRNA processing and degradation pathways for the polycistronic yrzI (spyTA) mRNA in Bacillus subtilis.

IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology FEBS Letters Pub Date : 2025-03-08 DOI:10.1002/1873-3468.70027
Laetitia Gilet, Magali Leroy, Alexandre Maes, Ciarán Condon, Frédérique Braun
{"title":"Unconventional mRNA processing and degradation pathways for the polycistronic yrzI (spyTA) mRNA in Bacillus subtilis.","authors":"Laetitia Gilet, Magali Leroy, Alexandre Maes, Ciarán Condon, Frédérique Braun","doi":"10.1002/1873-3468.70027","DOIUrl":null,"url":null,"abstract":"<p><p>The ribosome-associated endoribonuclease Rae1 cleaves the Bacillus subtilis yrzI operon mRNA in a translation-dependent manner. This operon encodes up to four small peptides, S1027, YrzI, S1025, and S1024, whose functions are unknown. Here, we identified the function of YrzI and S1025 and deciphered the degradation pathways of the yrzI polycistronic mRNA. We show that YrzI is toxic at high concentrations, but co-expression with S1025 abolishes its toxicity, and that, in the absence of Rae1, S1025 is the major antidote to the YzI toxin. We show that a highly stable mRNA species containing the YrzI and S1025 open reading frames results from endoribonucleolytic cleavage upstream of yrzI followed by the arrest of 5'-exoribonucleolytic processing by ribosomes bound to its exceptionally strong Shine-Dalgarno sequence. Degradation of this mRNA requires either translation-dependent cleavage within S1025 by Rae1 or direct attack from the structured 3'-end by 3'-exoribonucleases. Neither pathway is common for a B. subtilis mRNA.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.70027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The ribosome-associated endoribonuclease Rae1 cleaves the Bacillus subtilis yrzI operon mRNA in a translation-dependent manner. This operon encodes up to four small peptides, S1027, YrzI, S1025, and S1024, whose functions are unknown. Here, we identified the function of YrzI and S1025 and deciphered the degradation pathways of the yrzI polycistronic mRNA. We show that YrzI is toxic at high concentrations, but co-expression with S1025 abolishes its toxicity, and that, in the absence of Rae1, S1025 is the major antidote to the YzI toxin. We show that a highly stable mRNA species containing the YrzI and S1025 open reading frames results from endoribonucleolytic cleavage upstream of yrzI followed by the arrest of 5'-exoribonucleolytic processing by ribosomes bound to its exceptionally strong Shine-Dalgarno sequence. Degradation of this mRNA requires either translation-dependent cleavage within S1025 by Rae1 or direct attack from the structured 3'-end by 3'-exoribonucleases. Neither pathway is common for a B. subtilis mRNA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
FEBS Letters
FEBS Letters 生物-生化与分子生物学
CiteScore
7.00
自引率
2.90%
发文量
303
审稿时长
1.0 months
期刊介绍: FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.
期刊最新文献
EXPRESSION OF CONCERN: Pre-Symptomatic Detection of Prions by Cyclic Amplification of Protein Misfolding. Front Cover Clioquinol induces mitochondrial toxicity in SH-SY5Y neuroblastoma cells by affecting the respiratory chain complex IV and OPA1 dynamin-like GTPase. The solution supramolecular structure of α2 → 8 polysialic acid suggests a structural cause for its low immunogenicity. IgG4 and IgG1 undergo common acid-induced compaction into an alternatively folded state.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1