Original Antigenic Sin in CD4+ T Cells.

IF 4.9 3区 医学 Q2 IMMUNOLOGY Immunology Pub Date : 2025-03-08 DOI:10.1111/imm.13916
Mingran Zhang, Junling Ma, Meili Li
{"title":"Original Antigenic Sin in CD4+ T Cells.","authors":"Mingran Zhang, Junling Ma, Meili Li","doi":"10.1111/imm.13916","DOIUrl":null,"url":null,"abstract":"<p><p>Original antigenic sin (OAS) describes the phenomenon in which prior exposure to an antigen weakens the adaptive antibody response to a subsequent heterologous infection. This phenomenon can diminish the effectiveness of immunity acquired through vaccination or previous infections. We demonstrate that OAS arises because CD4+ T cell proliferation and regulation signals are antigen-nonspecific. Rapidly responding memory CD4+ T cells trigger regulatory T cell (Tregs) responses, which prematurely suppress the naïve CD4+ T cell response, leading to a similar OAS effect in CD4+ T cells. This mechanism is illustrated through a mathematical model incorporating naïve and memory CD4+ T cell proliferation, interleukin-2 (IL-2), and Tregs. The model, calibrated with experimental data, employs numerical simulations to analyse how CD4+ T cell responses vary with the degree of cross-reactivity between memory CD4+ T cells and the antigen associated with the secondary infection. The findings indicate that the immune response is weakest at an intermediate level of cross-reactivity, a key characteristic of OAS. This mechanism may also explain OAS in antibody responses.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":" ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/imm.13916","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Original antigenic sin (OAS) describes the phenomenon in which prior exposure to an antigen weakens the adaptive antibody response to a subsequent heterologous infection. This phenomenon can diminish the effectiveness of immunity acquired through vaccination or previous infections. We demonstrate that OAS arises because CD4+ T cell proliferation and regulation signals are antigen-nonspecific. Rapidly responding memory CD4+ T cells trigger regulatory T cell (Tregs) responses, which prematurely suppress the naïve CD4+ T cell response, leading to a similar OAS effect in CD4+ T cells. This mechanism is illustrated through a mathematical model incorporating naïve and memory CD4+ T cell proliferation, interleukin-2 (IL-2), and Tregs. The model, calibrated with experimental data, employs numerical simulations to analyse how CD4+ T cell responses vary with the degree of cross-reactivity between memory CD4+ T cells and the antigen associated with the secondary infection. The findings indicate that the immune response is weakest at an intermediate level of cross-reactivity, a key characteristic of OAS. This mechanism may also explain OAS in antibody responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunology
Immunology 医学-免疫学
CiteScore
11.90
自引率
1.60%
发文量
175
审稿时长
4-8 weeks
期刊介绍: Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers. Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology. The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.
期刊最新文献
Computer Integrated Dominant Epitopes Evoke Protective Immune Response Against Streptococcus pneumoniae. Original Antigenic Sin in CD4+ T Cells. Issue Information Ammonia-Induced Cell Death: A Novel Frontier to Enhance Cancer Immunotherapy. Cytotoxic Signature and IFN-γ Production Dominate CD4+ T-Cell Response During Human Toxoplasmosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1