Characterization of the Pyropia katadae plastid genome and comparative analysis within Bangiales species.

IF 2.8 3区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Journal of Phycology Pub Date : 2025-03-10 DOI:10.1111/jpy.70007
Xianghai Tang, Xinzi Yu, Xinyu Zhu, Ka Bian, Chengzhen Meng, Yunxiang Mao
{"title":"Characterization of the Pyropia katadae plastid genome and comparative analysis within Bangiales species.","authors":"Xianghai Tang, Xinzi Yu, Xinyu Zhu, Ka Bian, Chengzhen Meng, Yunxiang Mao","doi":"10.1111/jpy.70007","DOIUrl":null,"url":null,"abstract":"<p><p>Bangiales species live in intertidal regions and suffer from stresses from a variable environment, making them suitable research objects for studying how plants adapt to nature. In this study, the plastid genome of Pyropia katadae was sequenced and compared with those of 11 previously reported Bangiales species. The Py. katadae plastid genome was 193,531 bp long and contained a single-copy region (LSC) of 149,821 bp, a small single-copy region (SSC) of 34,732 bp, and two direct repeats (DRs) 4489 bp long in between. Furthermore, we compared the plastid genomes of 12 Bangiales species. Among the 12 Bangiales plastid genomes, Bangia fuscopurpurea harbored the largest plastid genome size (196,913 bp), and Py. perforata harbored the smallest (189,789 bp). Phylogenetic analyses of shared genes indicated that Py. katadae clustered with Py. yezoensis into a single clade with a high bootstrap value. An overall high degree of similarity in gene content and arrangement among the Bangiales plastid genomes was observed. The size of the plastid genomes and that of the repeats of Pyropia were positively correlated, demonstrating that the repeats were essential for changes in the plastid genome size over a short evolutionary time. The presence of DR or approximate DR regions in most Bangiales plastid genomes indicates the existence of DR regions in their last common ancestor. The different shortened lengths of identical DR regions showed that each species experienced species-specific evolutionary events, which might cause variations in the sequences and the loss of genes. The two steps of fragment reversal could generate the DRs of Bangiales species from an ancestor in common with Florideophyceae. We identified positive selection sites in eight genes that appeared to be essential for Bangiales species to adapt to diverse environments. Our results provide essential genetic data for an in-depth understanding of the evolution and phylogeny of Bangiales species.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jpy.70007","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bangiales species live in intertidal regions and suffer from stresses from a variable environment, making them suitable research objects for studying how plants adapt to nature. In this study, the plastid genome of Pyropia katadae was sequenced and compared with those of 11 previously reported Bangiales species. The Py. katadae plastid genome was 193,531 bp long and contained a single-copy region (LSC) of 149,821 bp, a small single-copy region (SSC) of 34,732 bp, and two direct repeats (DRs) 4489 bp long in between. Furthermore, we compared the plastid genomes of 12 Bangiales species. Among the 12 Bangiales plastid genomes, Bangia fuscopurpurea harbored the largest plastid genome size (196,913 bp), and Py. perforata harbored the smallest (189,789 bp). Phylogenetic analyses of shared genes indicated that Py. katadae clustered with Py. yezoensis into a single clade with a high bootstrap value. An overall high degree of similarity in gene content and arrangement among the Bangiales plastid genomes was observed. The size of the plastid genomes and that of the repeats of Pyropia were positively correlated, demonstrating that the repeats were essential for changes in the plastid genome size over a short evolutionary time. The presence of DR or approximate DR regions in most Bangiales plastid genomes indicates the existence of DR regions in their last common ancestor. The different shortened lengths of identical DR regions showed that each species experienced species-specific evolutionary events, which might cause variations in the sequences and the loss of genes. The two steps of fragment reversal could generate the DRs of Bangiales species from an ancestor in common with Florideophyceae. We identified positive selection sites in eight genes that appeared to be essential for Bangiales species to adapt to diverse environments. Our results provide essential genetic data for an in-depth understanding of the evolution and phylogeny of Bangiales species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Phycology
Journal of Phycology 生物-海洋与淡水生物学
CiteScore
6.50
自引率
3.40%
发文量
69
审稿时长
2 months
期刊介绍: The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
期刊最新文献
A comparison of calcification mechanisms in haploid and diploid cells of the coccolithophore Calcidiscus leptoporus (Murray & Blackman 1898). Characterization of the Pyropia katadae plastid genome and comparative analysis within Bangiales species. Cryptic diversity within the Gonyaulax spinifera species complex, its relation to the cyst-defined species Spiniferites bentorii, S. mirabilis and S. membranaceus, with the description of Gonyaulax carbonell-mooreae sp. nov. (Gonyaulacales, Dinophyceae). Hyposaline conditions impact the early life-stages of commercially important high-latitude kelp species. Seasonality and interannual stability in the population genetic structure of Batrachospermum gelatinosum (Rhodophyta).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1