Renal-clearable and tumor-retained nanodots overcoming metabolic reprogramming to boost mitochondrial-targeted photodynamic therapy in triple-negative breast cancer.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Nanobiotechnology Pub Date : 2025-03-10 DOI:10.1186/s12951-025-03264-7
Defan Yao, Yanshu Wang, Xue Dong, Yanhong Chen, Ding-Kun Ji, Rongfeng Zou, Yuelin Huang, Weixi Huang, Dengbin Wang
{"title":"Renal-clearable and tumor-retained nanodots overcoming metabolic reprogramming to boost mitochondrial-targeted photodynamic therapy in triple-negative breast cancer.","authors":"Defan Yao, Yanshu Wang, Xue Dong, Yanhong Chen, Ding-Kun Ji, Rongfeng Zou, Yuelin Huang, Weixi Huang, Dengbin Wang","doi":"10.1186/s12951-025-03264-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Targeting tumor metabolism reprogramming has demonstrated a synergistic antitumor effect in photodynamic therapy of triple-negative breast cancer (TNBC). However, such a combination therapeutic regimen has encountered challenges, such as limited photosensitizer bioavailability and severe drug toxicity.</p><p><strong>Methods and results: </strong>Herein, ultrasmall metal-organic frameworks (MOFs) nanodots (MSPC) that encapsulate metabolism inhibitors and mitochondria-targeted photosensitizers are designed and fabricated for synergistic photodynamic therapy (PDT) of TNBC. The MSPC exhibits an acidic-sensitive drug release, leading to glutathione depletion and mitochondrial respiration suppression. Significantly, MSPC substantially reduces intracellular adenosine triphosphate (ATP) levels by simultaneously disrupting oxidative phosphorylation and impeding aerobic glycolysis. Therefore, the glutathione depletion combined with metabolism inhibitor increases oxidative stress, which improves the efficacy of mitochondria-targeted PDT. Additionally, the increased retention of photosensitizers within tumors, facilitated by aggregation-enhanced retention (AER) effect, extends the time window for long-term fluorescence/photoacoustic imaging-guided PDT of TNBC. MSPC-sensitized PDT significantly suppresses tumor growth with a single-dose injection and repeatable PDT.</p><p><strong>Conclusions: </strong>In summary, these renal-clearable and aggregation-enhanced tumor-retained nanodots indicate the feasibility of overcoming resistance to reactive oxygen species induced by metabolic reprogramming, thus holding significant implications for boosting PDT of TNBC.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"195"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03264-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Targeting tumor metabolism reprogramming has demonstrated a synergistic antitumor effect in photodynamic therapy of triple-negative breast cancer (TNBC). However, such a combination therapeutic regimen has encountered challenges, such as limited photosensitizer bioavailability and severe drug toxicity.

Methods and results: Herein, ultrasmall metal-organic frameworks (MOFs) nanodots (MSPC) that encapsulate metabolism inhibitors and mitochondria-targeted photosensitizers are designed and fabricated for synergistic photodynamic therapy (PDT) of TNBC. The MSPC exhibits an acidic-sensitive drug release, leading to glutathione depletion and mitochondrial respiration suppression. Significantly, MSPC substantially reduces intracellular adenosine triphosphate (ATP) levels by simultaneously disrupting oxidative phosphorylation and impeding aerobic glycolysis. Therefore, the glutathione depletion combined with metabolism inhibitor increases oxidative stress, which improves the efficacy of mitochondria-targeted PDT. Additionally, the increased retention of photosensitizers within tumors, facilitated by aggregation-enhanced retention (AER) effect, extends the time window for long-term fluorescence/photoacoustic imaging-guided PDT of TNBC. MSPC-sensitized PDT significantly suppresses tumor growth with a single-dose injection and repeatable PDT.

Conclusions: In summary, these renal-clearable and aggregation-enhanced tumor-retained nanodots indicate the feasibility of overcoming resistance to reactive oxygen species induced by metabolic reprogramming, thus holding significant implications for boosting PDT of TNBC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
期刊最新文献
Renal-clearable and tumor-retained nanodots overcoming metabolic reprogramming to boost mitochondrial-targeted photodynamic therapy in triple-negative breast cancer. A bivalent spike-targeting nanobody with anti-sarbecovirus activity. Co-delivery of axitinib and PD-L1 siRNA for the synergism of vascular normalization and immune checkpoint inhibition to boost anticancer immunity. Platelet hitchhiking vascular-disrupting agents for self-amplified tumor-targeting therapy. Recent advances and challenges in metal-based antimicrobial materials: a review of strategies to combat antibiotic resistance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1