Yunxu Bian , Zunli Hu , Rongzhen Wang , Shuyu Xie , Yewen Sun , Tianqi Liu , Shaojie Ma , Bin Liu , Minjia Tan , Jun-Yu Xu
{"title":"Characterization of substrate distribution and functional implication of lysine acylations in Staphylococcus aureus","authors":"Yunxu Bian , Zunli Hu , Rongzhen Wang , Shuyu Xie , Yewen Sun , Tianqi Liu , Shaojie Ma , Bin Liu , Minjia Tan , Jun-Yu Xu","doi":"10.1016/j.jprot.2025.105419","DOIUrl":null,"url":null,"abstract":"<div><div><em>Staphylococcus aureus</em> (<em>S. aureus</em>) is a major pathogen whose post-translational modifications (PTMs) regulate key biological processes that exert a substantial impact on protein function within this pathogen. In this study, we comprehensively analyzed the overall patterns of three lysine acylation in <em>S. aureus</em> including acetylation, succinylation, and malonylation. Using mass spectrometry, we identified 1249 acetylated, 871 succinylated, and 67 malonylated sites. Bioinformatic analysis furtherly revealed that both lysine acetylation and succinylation exhibited a preferential association with glutamate residues near the modified lysine positions. Pathway enrichment showed that modified substrates were associated with ribosomes and metabolic functions. Additional functional exploration showed that lysine succinylation significantly regulates the enzymatic activity of Glutamyl-tRNA amidotransferase and Carbamoyl phosphate synthase. In conclusion, our study enhanced the comprehension of lysine succinylation in <em>S. aureus</em> and highlights potential targets related to its pathogenicity at the post-translational modification level.</div></div><div><h3>Significance new</h3><div>Lysine acylations play important roles in regulating bacterial survival and pathogenicity in <em>Staphylococcus aureus</em>. However, comprehensive and systematic investigations of the lysine acylomes in <em>S. aureus</em> remain insufficient. In this study, we conducted a comprehensive analysis of three lysine acylation modifications in <em>Staphylococcus aureus</em> subspecies <em>aureus</em> ATCC 25923 using mass spectrometry-based proteomic techniques. The objective was to investigate the potential impact of these modifications on protein function. Our bioinformatics analysis identified a significant correlation between lysine acylations and both ribosomal and metabolic pathways. Through additional experimental validation, we have substantiated that lysine succinylation plays a significant regulatory role in the activities of Glutamyl-tRNA amidinotransferase and Carbamoyl phosphate synthetase, consequently exerting a profound impact on cellular energy metabolism and protein synthesis in <em>S. aureus</em>.</div><div>Collectively, our study underscores the pivotal role of lysine acylation modifications in <em>S. aureus</em> in modulating enzyme function, thereby offering valuable insights into the biology of <em>S. aureus</em> and informing potential therapeutic strategies.</div></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":"316 ","pages":"Article 105419"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874391925000466","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Staphylococcus aureus (S. aureus) is a major pathogen whose post-translational modifications (PTMs) regulate key biological processes that exert a substantial impact on protein function within this pathogen. In this study, we comprehensively analyzed the overall patterns of three lysine acylation in S. aureus including acetylation, succinylation, and malonylation. Using mass spectrometry, we identified 1249 acetylated, 871 succinylated, and 67 malonylated sites. Bioinformatic analysis furtherly revealed that both lysine acetylation and succinylation exhibited a preferential association with glutamate residues near the modified lysine positions. Pathway enrichment showed that modified substrates were associated with ribosomes and metabolic functions. Additional functional exploration showed that lysine succinylation significantly regulates the enzymatic activity of Glutamyl-tRNA amidotransferase and Carbamoyl phosphate synthase. In conclusion, our study enhanced the comprehension of lysine succinylation in S. aureus and highlights potential targets related to its pathogenicity at the post-translational modification level.
Significance new
Lysine acylations play important roles in regulating bacterial survival and pathogenicity in Staphylococcus aureus. However, comprehensive and systematic investigations of the lysine acylomes in S. aureus remain insufficient. In this study, we conducted a comprehensive analysis of three lysine acylation modifications in Staphylococcus aureus subspecies aureus ATCC 25923 using mass spectrometry-based proteomic techniques. The objective was to investigate the potential impact of these modifications on protein function. Our bioinformatics analysis identified a significant correlation between lysine acylations and both ribosomal and metabolic pathways. Through additional experimental validation, we have substantiated that lysine succinylation plays a significant regulatory role in the activities of Glutamyl-tRNA amidinotransferase and Carbamoyl phosphate synthetase, consequently exerting a profound impact on cellular energy metabolism and protein synthesis in S. aureus.
Collectively, our study underscores the pivotal role of lysine acylation modifications in S. aureus in modulating enzyme function, thereby offering valuable insights into the biology of S. aureus and informing potential therapeutic strategies.
期刊介绍:
Journal of Proteomics is aimed at protein scientists and analytical chemists in the field of proteomics, biomarker discovery, protein analytics, plant proteomics, microbial and animal proteomics, human studies, tissue imaging by mass spectrometry, non-conventional and non-model organism proteomics, and protein bioinformatics. The journal welcomes papers in new and upcoming areas such as metabolomics, genomics, systems biology, toxicogenomics, pharmacoproteomics.
Journal of Proteomics unifies both fundamental scientists and clinicians, and includes translational research. Suggestions for reviews, webinars and thematic issues are welcome.