{"title":"Microfluidic development of liposome nanoparticles encapsulated with yam polysaccharide.","authors":"Yuehan Cui, Meng Song, Ruilai Liu, Zhenhao Xi, Ling Zhao, Lian Cen","doi":"10.1016/j.xphs.2025.103718","DOIUrl":null,"url":null,"abstract":"<p><p>A novel liposome nanoparticle loaded with yam polysaccharide was developed in this study via a tailor-made microfluidic device and further optimized through the Box-Behnken Design method of surface analysis to exploit combinational immunomodulatory effects of liposomes and yam polysaccharide. A chip of 100 μm in height and 200 μm in width with a mixing channel with embedded baffles to enhance fluid mixing was first designed and fabricated. Liposome nanoparticles were obtained by manipulating the operating parameters of the microfluidic chip. The formulation of yam polysaccharide loaded liposomes (YPL<sup>1</sup>) was optimized using response-surface analysis, and their physicochemical properties were characterized. In vitro cellular assays were performed to assess the effect of YPL on the activity of mouse dendritic cells (DC) and the secretion of immune-related cytokines to investigate the immune-enhancing effect of YPL in vitro. The resulting YPL had a mean size of 154.2±3.8 nm with a narrow size distribution (PDI=0.083) and had a high entrapment efficiency (EE) of 79.02 %. The YPL exhibited good stability at 4 °C over 14 days of storage, and an in vitro sustained release duration of approximately 30 h. The YPL demonstrated excellent biocompatibility and stimulated the expression of immune-related cytokines, especially TNF-α. Therefore, the YPL with well controlled particle size and high loading capacity, capable of exhibiting potent immunostimulatory activity was successfully developed in this study via a microfluidic device and optimized using response-surface analysis. The current YPL engineering methodology could further serve as an experimental platform for liposome nanoparticle development.</p>","PeriodicalId":16741,"journal":{"name":"Journal of pharmaceutical sciences","volume":" ","pages":"103718"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xphs.2025.103718","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel liposome nanoparticle loaded with yam polysaccharide was developed in this study via a tailor-made microfluidic device and further optimized through the Box-Behnken Design method of surface analysis to exploit combinational immunomodulatory effects of liposomes and yam polysaccharide. A chip of 100 μm in height and 200 μm in width with a mixing channel with embedded baffles to enhance fluid mixing was first designed and fabricated. Liposome nanoparticles were obtained by manipulating the operating parameters of the microfluidic chip. The formulation of yam polysaccharide loaded liposomes (YPL1) was optimized using response-surface analysis, and their physicochemical properties were characterized. In vitro cellular assays were performed to assess the effect of YPL on the activity of mouse dendritic cells (DC) and the secretion of immune-related cytokines to investigate the immune-enhancing effect of YPL in vitro. The resulting YPL had a mean size of 154.2±3.8 nm with a narrow size distribution (PDI=0.083) and had a high entrapment efficiency (EE) of 79.02 %. The YPL exhibited good stability at 4 °C over 14 days of storage, and an in vitro sustained release duration of approximately 30 h. The YPL demonstrated excellent biocompatibility and stimulated the expression of immune-related cytokines, especially TNF-α. Therefore, the YPL with well controlled particle size and high loading capacity, capable of exhibiting potent immunostimulatory activity was successfully developed in this study via a microfluidic device and optimized using response-surface analysis. The current YPL engineering methodology could further serve as an experimental platform for liposome nanoparticle development.
期刊介绍:
The Journal of Pharmaceutical Sciences will publish original research papers, original research notes, invited topical reviews (including Minireviews), and editorial commentary and news. The area of focus shall be concepts in basic pharmaceutical science and such topics as chemical processing of pharmaceuticals, including crystallization, lyophilization, chemical stability of drugs, pharmacokinetics, biopharmaceutics, pharmacodynamics, pro-drug developments, metabolic disposition of bioactive agents, dosage form design, protein-peptide chemistry and biotechnology specifically as these relate to pharmaceutical technology, and targeted drug delivery.