Absolute quantitative lipidomics reveals the disturbance of lipid metabolism induced by oral exposure of titanium dioxide nanoparticles

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES NanoImpact Pub Date : 2025-01-01 DOI:10.1016/j.impact.2025.100554
Nairui Yu , Jiaqi Shi , Ying Ma , Yi Zhang , Li Guan , Zhangjian Chen , Guang Jia
{"title":"Absolute quantitative lipidomics reveals the disturbance of lipid metabolism induced by oral exposure of titanium dioxide nanoparticles","authors":"Nairui Yu ,&nbsp;Jiaqi Shi ,&nbsp;Ying Ma ,&nbsp;Yi Zhang ,&nbsp;Li Guan ,&nbsp;Zhangjian Chen ,&nbsp;Guang Jia","doi":"10.1016/j.impact.2025.100554","DOIUrl":null,"url":null,"abstract":"<div><div>The widespread use of titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) as a white pigment in consumer goods increases the possibility of its release into the environment, which poses a great health risk to human beings. Many studies have proved the liver damage caused by TiO<sub>2</sub> NPs, but the research about the potential effects of TiO<sub>2</sub> NPs on liver lipid metabolism has been limited. Therefore, we selected Sprague-Dawley (SD) rats to explore the effects of long-term exposure to TiO<sub>2</sub> NPs on lipid metabolism. Rats were exposed to TiO<sub>2</sub> NPs at 0, 2, 10, 50 mg/kg body weight daily for 90 consecutive days. Subsequently, absolute quantitative lipidomics was used to ascertain variation of differential lipid metabolites in rat liver and serum. The results showed that TiO<sub>2</sub> NPs (50 mg/kg) changed 22 lipid metabolites such as DAG (18:2/20:5) and TAG (58:10/FA18:2) in rat liver. In the serum, the alteration of 119 lipid metabolites such as DAG (18:0/18:2) were more significant. There was a significant correlation between the different lipid metabolites in liver and serum. At the same time, it was observed that the relative expression levels of oxidative stress-related genes <em>Nrf-2</em> and <em>Ho-1</em> changed significantly, and they were closely related to differential metabolites. In conclusion, oral exposure of TiO<sub>2</sub> NPs has changed the lipid metabolomics of liver and serum, and the strong induction of oxidative stress may be related to it. TAG and DAG are key metabolites and metabolic pathways in two distinct biological samples, serving as potential indicators of liver injury to a certain extent.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"37 ","pages":"Article 100554"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245207482500014X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread use of titanium dioxide nanoparticles (TiO2 NPs) as a white pigment in consumer goods increases the possibility of its release into the environment, which poses a great health risk to human beings. Many studies have proved the liver damage caused by TiO2 NPs, but the research about the potential effects of TiO2 NPs on liver lipid metabolism has been limited. Therefore, we selected Sprague-Dawley (SD) rats to explore the effects of long-term exposure to TiO2 NPs on lipid metabolism. Rats were exposed to TiO2 NPs at 0, 2, 10, 50 mg/kg body weight daily for 90 consecutive days. Subsequently, absolute quantitative lipidomics was used to ascertain variation of differential lipid metabolites in rat liver and serum. The results showed that TiO2 NPs (50 mg/kg) changed 22 lipid metabolites such as DAG (18:2/20:5) and TAG (58:10/FA18:2) in rat liver. In the serum, the alteration of 119 lipid metabolites such as DAG (18:0/18:2) were more significant. There was a significant correlation between the different lipid metabolites in liver and serum. At the same time, it was observed that the relative expression levels of oxidative stress-related genes Nrf-2 and Ho-1 changed significantly, and they were closely related to differential metabolites. In conclusion, oral exposure of TiO2 NPs has changed the lipid metabolomics of liver and serum, and the strong induction of oxidative stress may be related to it. TAG and DAG are key metabolites and metabolic pathways in two distinct biological samples, serving as potential indicators of liver injury to a certain extent.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绝对定量脂质组学揭示了口服二氧化钛纳米颗粒引起的脂质代谢紊乱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NanoImpact
NanoImpact Social Sciences-Safety Research
CiteScore
11.00
自引率
6.10%
发文量
69
审稿时长
23 days
期刊介绍: NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.
期刊最新文献
Impact of polystyrene nanoplastics on physiology, nutrient uptake, and root system architecture of aeroponically grown citrus plants Regulatory preparedness for multicomponent nanomaterials: Current state, gaps and challenges of REACH The dispersion method does not affect the in vitro genotoxicity of multi-walled carbon nanotubes despite inducing surface alterations Nano versus bulk: Evaluating the toxicity of lanthanum, yttrium, and cerium oxides on Enchytraeus crypticus Nano-sized polystyrene plastics toxicity: Necroptosis pathway caused by autophagy blockade and lysosomal dysfunction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1