Myeloma cell intrinsic ANXA1 elevation and T cell dysfunction contribute to BCMA-negative relapse after CAR-T therapy.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2025-03-07 DOI:10.1016/j.ymthe.2025.03.001
Shuangshuang Yang, Guixiang Wang, Jiahuan Chen, Wu Zhang, Jing Wu, Weiqing Liu, Ling Bai, Peide Huang, Jianqing Mi, Jie Xu
{"title":"Myeloma cell intrinsic ANXA1 elevation and T cell dysfunction contribute to BCMA-negative relapse after CAR-T therapy.","authors":"Shuangshuang Yang, Guixiang Wang, Jiahuan Chen, Wu Zhang, Jing Wu, Weiqing Liu, Ling Bai, Peide Huang, Jianqing Mi, Jie Xu","doi":"10.1016/j.ymthe.2025.03.001","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple myeloma (MM) relapse still occurs after a durable response to anti-BCMA chimeric antigen receptor-engineered T (CAR-T) cell therapy with less-defined factors. Herein, we investigated a CAR-T-exposed MM patient who relapsed after 12 months of remission by single-cell transcriptome sequencing. The bone marrow CAR-T population at relapse exhibited exhaustion and proliferation attenuation. The recurrent myeloma cells were deficient in or weakly expressed TNFRSF17 (BCMA) but possessed an identical immunoglobulin clonality to the baseline tumor. Interestingly, combined with the transcriptome profile of the myeloma strains, MM cells with BCMA negativity featured high ANXA1 expression that was identified as an inferior prognostic indicator for MM patients. At a single-cell resolution, BCMA-negative myeloma could be present in the MM patients without CAR-T cell exposure and displayed an increased level of intrinsic ANXA1 transcripts. In vitro assays unveiled that ANXA1 elevation conferred growth capacity to BCMA-negative myeloma cells via AMPKα signaling activation and disturbed CAR-T cell fitness. Blockade of ANXA1 reduced BCMA-negative myeloma cell proliferation. Murine models further demonstrated that ANXA1 inhibition could effectively diminish BCMA-negative myeloma that escaped from CAR-T's attack. Together, our data identified ANXA1 as a potential target for BCMA-negative myeloma clearance. The ANXA1-targeting strategy might be helpful to CAR-T treatment optimization.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.03.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple myeloma (MM) relapse still occurs after a durable response to anti-BCMA chimeric antigen receptor-engineered T (CAR-T) cell therapy with less-defined factors. Herein, we investigated a CAR-T-exposed MM patient who relapsed after 12 months of remission by single-cell transcriptome sequencing. The bone marrow CAR-T population at relapse exhibited exhaustion and proliferation attenuation. The recurrent myeloma cells were deficient in or weakly expressed TNFRSF17 (BCMA) but possessed an identical immunoglobulin clonality to the baseline tumor. Interestingly, combined with the transcriptome profile of the myeloma strains, MM cells with BCMA negativity featured high ANXA1 expression that was identified as an inferior prognostic indicator for MM patients. At a single-cell resolution, BCMA-negative myeloma could be present in the MM patients without CAR-T cell exposure and displayed an increased level of intrinsic ANXA1 transcripts. In vitro assays unveiled that ANXA1 elevation conferred growth capacity to BCMA-negative myeloma cells via AMPKα signaling activation and disturbed CAR-T cell fitness. Blockade of ANXA1 reduced BCMA-negative myeloma cell proliferation. Murine models further demonstrated that ANXA1 inhibition could effectively diminish BCMA-negative myeloma that escaped from CAR-T's attack. Together, our data identified ANXA1 as a potential target for BCMA-negative myeloma clearance. The ANXA1-targeting strategy might be helpful to CAR-T treatment optimization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
Progress in skin gene therapy: from the inside and out. Current and future treatments for sickle cell disease - from hematopoietic stem cell transplantation to in vivo gene therapy. VEGF-B is a novel mediator of endoplasmic reticulum stress which induces angiogenesis in the heart without VEGFR1 or NRP activities via RGD-binding integrins. From Concept to Cure: The Evolution of CAR-T Cell Therapy. Use of CD19-targeted Immune Modulation to Eradicate AAV Neutralizing Antibodies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1