Julia Ball, Avery Bradley, Anh Le, John F Tisdale, Naoya Uchida
{"title":"Current and future treatments for sickle cell disease - from hematopoietic stem cell transplantation to in vivo gene therapy.","authors":"Julia Ball, Avery Bradley, Anh Le, John F Tisdale, Naoya Uchida","doi":"10.1016/j.ymthe.2025.03.016","DOIUrl":null,"url":null,"abstract":"<p><p>Sickle cell disease (SCD) is a single-gene disorder caused by a point mutation of the β-globin gene, resulting in hemolytic anemia, acute pain, multiorgan damage, and early mortality. Hydroxyurea is a first-line drug therapy that switches sickle-globin to non-pathogenic γ-globin; however, it requires lifelong oral administration. Allogeneic hematopoietic stem cell (HSC) transplantation allows for a one-time cure for SCD, albeit with histocompatibility limitations. Therefore, autologous HSC gene therapy was developed to cure SCD in a single treatment, without HSC donors. Current HSC gene therapy is based on the ex vivo culture of patients' HSCs with lentiviral gene addition and gene editing, followed by autologous transplantation back to the patient. However, the complexity of the treatment process and high costs hinder the universal application of ex vivo gene therapy. Therefore, the development of in vivo HSC gene therapy, where gene therapy tools are directly administered to patients, is desirable to provide a more accessible, cost-effective solution that can cure SCD worldwide. In this review, we discuss current treatments including drug therapies, HSC transplantation, and ex vivo gene therapy, the development of gene therapy tools, and progress toward curative in vivo gene therapy in SCD.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.03.016","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sickle cell disease (SCD) is a single-gene disorder caused by a point mutation of the β-globin gene, resulting in hemolytic anemia, acute pain, multiorgan damage, and early mortality. Hydroxyurea is a first-line drug therapy that switches sickle-globin to non-pathogenic γ-globin; however, it requires lifelong oral administration. Allogeneic hematopoietic stem cell (HSC) transplantation allows for a one-time cure for SCD, albeit with histocompatibility limitations. Therefore, autologous HSC gene therapy was developed to cure SCD in a single treatment, without HSC donors. Current HSC gene therapy is based on the ex vivo culture of patients' HSCs with lentiviral gene addition and gene editing, followed by autologous transplantation back to the patient. However, the complexity of the treatment process and high costs hinder the universal application of ex vivo gene therapy. Therefore, the development of in vivo HSC gene therapy, where gene therapy tools are directly administered to patients, is desirable to provide a more accessible, cost-effective solution that can cure SCD worldwide. In this review, we discuss current treatments including drug therapies, HSC transplantation, and ex vivo gene therapy, the development of gene therapy tools, and progress toward curative in vivo gene therapy in SCD.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.