Multilayer PEO coatings with encapsulated cerium for active corrosion protection of aluminium.

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Materials Degradation Pub Date : 2025-01-01 Epub Date: 2025-03-07 DOI:10.1038/s41529-025-00560-3
Safiya Al Abri, Tess Knowles, Yitao Pan, Aleksey Yerokhin, Beatriz Mingo
{"title":"Multilayer PEO coatings with encapsulated cerium for active corrosion protection of aluminium.","authors":"Safiya Al Abri, Tess Knowles, Yitao Pan, Aleksey Yerokhin, Beatriz Mingo","doi":"10.1038/s41529-025-00560-3","DOIUrl":null,"url":null,"abstract":"<p><p>This work aims to develop multilayer coating systems to enhance the long-term corrosion performance of aluminium-based components. The systems consists of a high-performance ceramic matrix that provides physical barrier protection, and a topcoat layer containing encapsulated Ce-based inhibitors, offering active corrosion protection through controlled released mechanisms. Two types of nanoparticles were used for the encapsulation, zeolite and halloysite nanotubes, each with different release triggers and kinetics. Multifunctional coatings demonstrated a superior corrosion performance compared to the passive unmodified coatings. Inhibitor release from the nanoparticles was triggered by ionic exchange processes and changes in pH associated with corrosion activity.</p>","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":"9 1","pages":"24"},"PeriodicalIF":6.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41529-025-00560-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work aims to develop multilayer coating systems to enhance the long-term corrosion performance of aluminium-based components. The systems consists of a high-performance ceramic matrix that provides physical barrier protection, and a topcoat layer containing encapsulated Ce-based inhibitors, offering active corrosion protection through controlled released mechanisms. Two types of nanoparticles were used for the encapsulation, zeolite and halloysite nanotubes, each with different release triggers and kinetics. Multifunctional coatings demonstrated a superior corrosion performance compared to the passive unmodified coatings. Inhibitor release from the nanoparticles was triggered by ionic exchange processes and changes in pH associated with corrosion activity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
期刊最新文献
Multilayer PEO coatings with encapsulated cerium for active corrosion protection of aluminium. Mechanisms of corrosive freeze-thaw damage in AA7075 using time-resolved x-ray microtomography and correlative electron microscopy Mechanisms of intergranular corrosion and self-healing in high temperature aged lean duplex stainless steel 2404 Feedback effect of the size of mineral particles on the molecular mechanisms employed by Caballeronia mineralivorans PML1(12) to weather minerals Assessing the feasibility of using a data-driven corrosion rate model for optimizing dosages of corrosion inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1