SP3-Mediated Transcriptional Activation of GRIK1 is Involved in Alzheimer's Disease-Induced Cognitive Decline by Inducing Inflammasome Activation in Microglia.

IF 3.3 4区 医学 Q2 NEUROSCIENCES NeuroMolecular Medicine Pub Date : 2025-03-07 DOI:10.1007/s12017-025-08844-2
Xiaolin Pang, Zhun Wang, Mengxue Zhang, Jinpeng Dong, Zhonglan Dong, Yiqing Yin
{"title":"SP3-Mediated Transcriptional Activation of GRIK1 is Involved in Alzheimer's Disease-Induced Cognitive Decline by Inducing Inflammasome Activation in Microglia.","authors":"Xiaolin Pang, Zhun Wang, Mengxue Zhang, Jinpeng Dong, Zhonglan Dong, Yiqing Yin","doi":"10.1007/s12017-025-08844-2","DOIUrl":null,"url":null,"abstract":"<p><p>GRIK1 has been identified to suppress the activation of NLRP3 inflammasome. The present study investigated the damaging effect of GRIK1 on Alzheimer's disease (AD), the most common neurodegenerative disease, by focusing on inflammasome. APP-PS1 mice were subjected to a Y-maze test and a Morris water maze test. APP-PS1 mice with GRIK1 knockdown were constructed using adeno-associated virus, and the effects of GRIK1 knockdown on the NLRP3 inflammasome activation in microglia of brain tissues of APP-PS1 mice were analyzed. Mouse primary microglia BV2 was induced by LPS, and Western blot, flow cytometry, and ELISA were performed. GRIK1 was significantly elevated in the brain tissues of APP-PS1 mice. GRIK1 knockdown inhibited the neuronal damage and NLRP3 neuroinflammation in the brain tissues and improved cognitive dysfunction of APP-PS1 mice. Knockdown of GRIK1 inhibited activation of NLRP3 inflammasome in BV2 cells. SP3 was upregulated in the brain tissues of APP-PS1 mice, and SP3 promoted GRIK1 transcription by binding to its promoter. Overexpression of GRIK1 reversed the mitigating effect of knockdown of SP3 on cognitive dysfunction and NLRP3 activation in APP-PS1 mice. Overall, our results revealed that SP3-induced GRIK1 transcription potentiates NLRP3 inflammasome activation in microglia, leading to cognitive dysfunction in AD.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"22"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-025-08844-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

GRIK1 has been identified to suppress the activation of NLRP3 inflammasome. The present study investigated the damaging effect of GRIK1 on Alzheimer's disease (AD), the most common neurodegenerative disease, by focusing on inflammasome. APP-PS1 mice were subjected to a Y-maze test and a Morris water maze test. APP-PS1 mice with GRIK1 knockdown were constructed using adeno-associated virus, and the effects of GRIK1 knockdown on the NLRP3 inflammasome activation in microglia of brain tissues of APP-PS1 mice were analyzed. Mouse primary microglia BV2 was induced by LPS, and Western blot, flow cytometry, and ELISA were performed. GRIK1 was significantly elevated in the brain tissues of APP-PS1 mice. GRIK1 knockdown inhibited the neuronal damage and NLRP3 neuroinflammation in the brain tissues and improved cognitive dysfunction of APP-PS1 mice. Knockdown of GRIK1 inhibited activation of NLRP3 inflammasome in BV2 cells. SP3 was upregulated in the brain tissues of APP-PS1 mice, and SP3 promoted GRIK1 transcription by binding to its promoter. Overexpression of GRIK1 reversed the mitigating effect of knockdown of SP3 on cognitive dysfunction and NLRP3 activation in APP-PS1 mice. Overall, our results revealed that SP3-induced GRIK1 transcription potentiates NLRP3 inflammasome activation in microglia, leading to cognitive dysfunction in AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SP3 通过诱导小胶质细胞中炎症组的活化,转录激活 GRIK1 参与阿尔茨海默病诱导的认知能力下降
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
期刊最新文献
SP3-Mediated Transcriptional Activation of GRIK1 is Involved in Alzheimer's Disease-Induced Cognitive Decline by Inducing Inflammasome Activation in Microglia. The Role of G-Protein-Coupled Receptor Kinase 4 in Modulating Mitophagy and Oxidative Stress in Cerebral Ischemia-Reperfusion Injury. The Peripheral Amyloid-β Nexus: Connecting Alzheimer's Disease with Atherosclerosis through Shared Pathophysiological Mechanisms. Leptin and Leptin Signaling in Multiple Sclerosis: A Narrative Review. NOTCH3 Variant Position Affects the Phenotype at the Pluripotent Stem Cell Level in CADASIL.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1