Genome-wide identification of SlIQMs and the regulatory effect of calcium on tomato seedlings under drought stress and phytohormone treatment.

IF 5.3 2区 生物学 Q1 PLANT SCIENCES Plant Cell Reports Pub Date : 2025-03-07 DOI:10.1007/s00299-025-03459-0
Jing Cui, Junrong Xu, Jin Qi, Xuefang Lu, Yunzhi Liu, Jingli Xiong, Wenjin Yu, Changxia Li
{"title":"Genome-wide identification of SlIQMs and the regulatory effect of calcium on tomato seedlings under drought stress and phytohormone treatment.","authors":"Jing Cui, Junrong Xu, Jin Qi, Xuefang Lu, Yunzhi Liu, Jingli Xiong, Wenjin Yu, Changxia Li","doi":"10.1007/s00299-025-03459-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>SlIQMs were identified, exogenous calcium and phytohormones induced their expression. SlIQMs's function were verified by VIGS. Calcium synergistically promoted seedling growth with ABA, IAA, MeJA and antagonized growth inhibition with GA<sub>3</sub> or SA. The IQM genes, are crucial members of the calmodulin-binding protein family, play pivotal roles in plant growth and stress response. However, the existence and impact of IQM in tomato remain unclear. This study demonstrates that the SlIQMs are randomly distributed across the 4 chromosomes of tomato and exclusively located within the nucleus. Phylogenetic analysis classifies the SlIQMs into 3 distinct subclasses. Analysis of cis-acting elements reveals that SlIQMs may function in stress or hormone process. Quantitative reverse-transcriptase PCR analysis further testified that polyethylene glycol (PEG), abscisic acid (ABA), indole acetic acid (IAA), gibberellin (GA<sub>3</sub>), methyl jasmonate (MeJA), and salicylic acid (SA) induce expression levels of SlIQM1/2/3/5/6/7. Furthermore, exogenous calcium significantly alleviates detrimental effects on seedlings growth leaded by drought stress. Moreover, the relationships between hormones and calcium were explored. The results showed that calcium synergistically promoted the seedlings growth with ABA, IAA and MeJA, however antagonistic effects on inhibiting growth are observed between calcium and GA<sub>3</sub> or SA. The virus-induced silencing of 6 candidate genes caused growth inhibition of tomato seedlings under drought stress and phytohormone treatment. These findings lay the foundation for a comprehensive study of the structure and biological function of SlIQM genes and the interaction between calcium and different plant hormones on plant growth.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 4","pages":"70"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03459-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: SlIQMs were identified, exogenous calcium and phytohormones induced their expression. SlIQMs's function were verified by VIGS. Calcium synergistically promoted seedling growth with ABA, IAA, MeJA and antagonized growth inhibition with GA3 or SA. The IQM genes, are crucial members of the calmodulin-binding protein family, play pivotal roles in plant growth and stress response. However, the existence and impact of IQM in tomato remain unclear. This study demonstrates that the SlIQMs are randomly distributed across the 4 chromosomes of tomato and exclusively located within the nucleus. Phylogenetic analysis classifies the SlIQMs into 3 distinct subclasses. Analysis of cis-acting elements reveals that SlIQMs may function in stress or hormone process. Quantitative reverse-transcriptase PCR analysis further testified that polyethylene glycol (PEG), abscisic acid (ABA), indole acetic acid (IAA), gibberellin (GA3), methyl jasmonate (MeJA), and salicylic acid (SA) induce expression levels of SlIQM1/2/3/5/6/7. Furthermore, exogenous calcium significantly alleviates detrimental effects on seedlings growth leaded by drought stress. Moreover, the relationships between hormones and calcium were explored. The results showed that calcium synergistically promoted the seedlings growth with ABA, IAA and MeJA, however antagonistic effects on inhibiting growth are observed between calcium and GA3 or SA. The virus-induced silencing of 6 candidate genes caused growth inhibition of tomato seedlings under drought stress and phytohormone treatment. These findings lay the foundation for a comprehensive study of the structure and biological function of SlIQM genes and the interaction between calcium and different plant hormones on plant growth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
期刊最新文献
A novel toolbox of GATEWAY-compatible vectors for rapid functional gene analysis in soybean composite plants. Genome-wide identification unravels the role of the arabinogalactan peptide (AGP) gene family in cotton plant architecture. Genome-wide identification of SlIQMs and the regulatory effect of calcium on tomato seedlings under drought stress and phytohormone treatment. Interacting MeZFP29 and MebZIPW regulates MeNRT2.2 from cassava responding to nitrate signaling. Genome-wide analysis of CBL and CIPK gene families in bermudagrass reveals the CdCIPK29-A1 as a stem growth angle regulator.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1