Transcriptomics, lipidomics, and single-nucleus RNA sequencing integration: exploring sphingolipids in MASH-HCC progression.

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell and Bioscience Pub Date : 2025-03-08 DOI:10.1186/s13578-025-01362-5
Jing Zeng, Grayson Way, Nan Wu, Xixian Jiang, Yun-Ling Tai, Derrick Zhao, Lianyong Su, Qianhua Yan, Xuan Wang, Emily C Gurley, Phillip B Hylemon, Sayed Obaidullah Aseem, Arun J Sanyal, Jiangao Fan, Huiping Zhou
{"title":"Transcriptomics, lipidomics, and single-nucleus RNA sequencing integration: exploring sphingolipids in MASH-HCC progression.","authors":"Jing Zeng, Grayson Way, Nan Wu, Xixian Jiang, Yun-Ling Tai, Derrick Zhao, Lianyong Su, Qianhua Yan, Xuan Wang, Emily C Gurley, Phillip B Hylemon, Sayed Obaidullah Aseem, Arun J Sanyal, Jiangao Fan, Huiping Zhou","doi":"10.1186/s13578-025-01362-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & aims: </strong>Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses various conditions, ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. MASLD is a significant risk factor for hepatocellular carcinoma (HCC) and is rapidly becoming the primary cause of liver transplantation. Dysregulated sphingolipid metabolism has been linked to the development of MASH-HCC. However, detailed insight into the sphingolipid profiles and cell type-specific changes in key genes involved in sphingolipid metabolism remains limited and forms the primary focus of this study.</p><p><strong>Approaches & results: </strong>This study used the well-characterized diet-induced MASH-HCC mouse model (DIAMOND). Total RNA sequencing data, NanoString nCounter<sup>®</sup> Gene profiling, and single-nucleus RNA sequencing (snRNA-seq) GEO data (GSE225381) were used in characterizing gene regulation in MASH-HCC progression. Sphingolipids in the serum and liver were profiled using targeted lipidomics. RNA data analysis showed dysregulation of key genes involved in sphingolipid metabolism, including ceramide synthase 6 (Cers6), serine palmitoyltransferase long chain base subunit 2 (Sptlc2), sphingosine kinase 2 (SphK2), and sphingosine-1-phosphate receptor 1-3 (S1pr1-3) which paralleled significant changes in sphingolipid composition and levels in both serum and liver. Furthermore, TCGA-LIHC patient data were analyzed and potential prognostic genes for MASH-HCC were identified using univariate and multivariate Cox analysis. The multivariate Cox analysis underscored the prognostic significance of several genes related to sphingolipid metabolism, including CERS6, SPTLC2, and S1PR1.</p><p><strong>Conclusion: </strong>Our findings provided valuable insights into the role of sphingolipids in the progression of MASH to HCC. Specific serum and liver sphingolipid profiles may serve as valuable biomarkers for diagnosis and prognosis in MASH-HCC.</p>","PeriodicalId":49095,"journal":{"name":"Cell and Bioscience","volume":"15 1","pages":"34"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Bioscience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13578-025-01362-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background & aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses various conditions, ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. MASLD is a significant risk factor for hepatocellular carcinoma (HCC) and is rapidly becoming the primary cause of liver transplantation. Dysregulated sphingolipid metabolism has been linked to the development of MASH-HCC. However, detailed insight into the sphingolipid profiles and cell type-specific changes in key genes involved in sphingolipid metabolism remains limited and forms the primary focus of this study.

Approaches & results: This study used the well-characterized diet-induced MASH-HCC mouse model (DIAMOND). Total RNA sequencing data, NanoString nCounter® Gene profiling, and single-nucleus RNA sequencing (snRNA-seq) GEO data (GSE225381) were used in characterizing gene regulation in MASH-HCC progression. Sphingolipids in the serum and liver were profiled using targeted lipidomics. RNA data analysis showed dysregulation of key genes involved in sphingolipid metabolism, including ceramide synthase 6 (Cers6), serine palmitoyltransferase long chain base subunit 2 (Sptlc2), sphingosine kinase 2 (SphK2), and sphingosine-1-phosphate receptor 1-3 (S1pr1-3) which paralleled significant changes in sphingolipid composition and levels in both serum and liver. Furthermore, TCGA-LIHC patient data were analyzed and potential prognostic genes for MASH-HCC were identified using univariate and multivariate Cox analysis. The multivariate Cox analysis underscored the prognostic significance of several genes related to sphingolipid metabolism, including CERS6, SPTLC2, and S1PR1.

Conclusion: Our findings provided valuable insights into the role of sphingolipids in the progression of MASH to HCC. Specific serum and liver sphingolipid profiles may serve as valuable biomarkers for diagnosis and prognosis in MASH-HCC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell and Bioscience
Cell and Bioscience BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
10.70
自引率
0.00%
发文量
187
审稿时长
>12 weeks
期刊介绍: Cell and Bioscience, the official journal of the Society of Chinese Bioscientists in America, is an open access, peer-reviewed journal that encompasses all areas of life science research.
期刊最新文献
Transcriptomics, lipidomics, and single-nucleus RNA sequencing integration: exploring sphingolipids in MASH-HCC progression. Gram-positive probiotics improves acetaminophen-induced hepatotoxicity by inhibiting leucine and Hippo-YAP pathway. The RNA binding protein CARHSP1 facilitates tumor growth, metastasis and immune escape by enhancing IL-17RA mRNA stabilization in prostate cancer. Canonical and non-canonical functions of the non-coding RNA component (TERC) of telomerase complex. Multiple functions of the ALT favorite helicase, BLM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1