Lipid metabolic reprogramming drives triglyceride storage and variable sensitivity to FASN inhibition in endocrine-resistant breast cancer cells.

IF 7.4 1区 医学 Q1 Medicine Breast Cancer Research Pub Date : 2025-03-07 DOI:10.1186/s13058-025-01991-1
Ashley V Ward, Duncan Riley, Kirsten E Cosper, Jessica Finlay-Schultz, Heather M Brechbuhl, Andrew E Libby, Kaitlyn B Hill, Rohan R Varshney, Peter Kabos, Michael C Rudolph, Carol A Sartorius
{"title":"Lipid metabolic reprogramming drives triglyceride storage and variable sensitivity to FASN inhibition in endocrine-resistant breast cancer cells.","authors":"Ashley V Ward, Duncan Riley, Kirsten E Cosper, Jessica Finlay-Schultz, Heather M Brechbuhl, Andrew E Libby, Kaitlyn B Hill, Rohan R Varshney, Peter Kabos, Michael C Rudolph, Carol A Sartorius","doi":"10.1186/s13058-025-01991-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lipid metabolic reprogramming is increasingly recognized as a hallmark of endocrine resistance in estrogen receptor-positive (ER+) breast cancer. In this study, we investigated alterations in lipid metabolism in ER + breast cancer cell lines with acquired resistance to common endocrine therapies and evaluated the efficacy of a clinically relevant fatty acid synthase (FASN) inhibitor.</p><p><strong>Methods: </strong>ER + breast cancer cell lines resistant to Tamoxifen (TamR), Fulvestrant (FulvR), and long-term estrogen withdrawal (EWD) were derived. Global gene expression and lipidomic profiling were performed to compare parental and endocrine resistant cells. Lipid storage was assessed using Oil Red O (ORO) staining. The FASN inhibitor TVB-2640 was tested for its impact on lipid storage and cell growth. <sup>13</sup>C<sub>2</sub>-acetate tracing was used to evaluate FASN activity and the efficacy of TVB-2640.</p><p><strong>Results: </strong>Endocrine resistant cells showed significant enrichment in lipid metabolism pathways and distinct lipidomic profiles, characterized by elevated triglyceride levels and enhanced cytoplasmic lipid droplets. <sup>13</sup>C<sub>2</sub>-acetate tracing revealed increased FASN activity in endocrine resistant cells, which was effectively reduced by TVB-2640. While TVB-2640 reduced lipid storage in most but not all cell lines, this did not correlate with decreased cell growth. Polyunsaturated fatty acids (PUFAs) containing 6 or more double bonds were elevated in endocrine resistant cells and remained unaffected or increased with TVB-2640.</p><p><strong>Conclusion: </strong>Endocrine resistant breast cancer cells undergo a metabolic shift toward increased triglyceride storage and PUFAs with high degrees of desaturation. While TVB-2640 reduced lipid storage in most conditions, it had limited effects on the growth of endocrine resistant breast cancer cells. Targeting specific lipid metabolic dependencies, particularly pathways that produce PUFAs, represents a potential therapeutic strategy in endocrine resistant breast cancer.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"27 1","pages":"32"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-025-01991-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Lipid metabolic reprogramming is increasingly recognized as a hallmark of endocrine resistance in estrogen receptor-positive (ER+) breast cancer. In this study, we investigated alterations in lipid metabolism in ER + breast cancer cell lines with acquired resistance to common endocrine therapies and evaluated the efficacy of a clinically relevant fatty acid synthase (FASN) inhibitor.

Methods: ER + breast cancer cell lines resistant to Tamoxifen (TamR), Fulvestrant (FulvR), and long-term estrogen withdrawal (EWD) were derived. Global gene expression and lipidomic profiling were performed to compare parental and endocrine resistant cells. Lipid storage was assessed using Oil Red O (ORO) staining. The FASN inhibitor TVB-2640 was tested for its impact on lipid storage and cell growth. 13C2-acetate tracing was used to evaluate FASN activity and the efficacy of TVB-2640.

Results: Endocrine resistant cells showed significant enrichment in lipid metabolism pathways and distinct lipidomic profiles, characterized by elevated triglyceride levels and enhanced cytoplasmic lipid droplets. 13C2-acetate tracing revealed increased FASN activity in endocrine resistant cells, which was effectively reduced by TVB-2640. While TVB-2640 reduced lipid storage in most but not all cell lines, this did not correlate with decreased cell growth. Polyunsaturated fatty acids (PUFAs) containing 6 or more double bonds were elevated in endocrine resistant cells and remained unaffected or increased with TVB-2640.

Conclusion: Endocrine resistant breast cancer cells undergo a metabolic shift toward increased triglyceride storage and PUFAs with high degrees of desaturation. While TVB-2640 reduced lipid storage in most conditions, it had limited effects on the growth of endocrine resistant breast cancer cells. Targeting specific lipid metabolic dependencies, particularly pathways that produce PUFAs, represents a potential therapeutic strategy in endocrine resistant breast cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
76
审稿时长
12 weeks
期刊介绍: Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.
期刊最新文献
Lipid metabolic reprogramming drives triglyceride storage and variable sensitivity to FASN inhibition in endocrine-resistant breast cancer cells. Preclinical evaluation of 64Cu-labeled cetuximab in immuno-PET for detecting sentinel lymph node metastasis in epidermal growth factor receptor-positive breast cancer. Unveiling the key mechanisms of FOLR2+ macrophage-mediated antitumor immunity in breast cancer using integrated single-cell RNA sequencing and bulk RNA sequencing. Predicting the efficacy of neoadjuvant chemotherapy in breast cancer patients based on ultrasound longitudinal temporal depth network fusion model. Correction: CXCR4 promotes tumor stemness maintenance and CDK4/6 inhibitors resistance in ER-positive breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1