{"title":"Establishing a semi-homology-directed recombination method for precision gene integration in axolotls.","authors":"Liqun Wang, Yan Hu, Yuanhui Qiu, Huiting Lin, Xiang Li, Sulei Fu, Yan-Yun Zeng, Maria Ghouse, Cheng Long, Yanmei Liu, Ji-Feng Fei","doi":"10.1016/j.jgg.2025.03.001","DOIUrl":null,"url":null,"abstract":"<p><p>The axolotl is broadly used in regenerative, developmental, and evolutionary biology research. Targeted gene knock-in is crucial for precision transgenesis, enabling disease modeling, visualization, tracking, and functional manipulation of specific cells or genes of interest (GOIs). Existing CRISPR/Cas9-mediated homology-independent method for gene knock-in often causes \"scars/indels\" at integration junctions. Here, we develop a CRISPR/Cas9-mediated semi-homology-directed recombination (HDR) knock-in method using a donor construct containing a single homology arm for precise GOI integration. This semi-HDR approach achieves seamless single-end integration of the Cherry reporter gene and a large inducible Cre cassette into intronless genes like Sox2 and Neurod6 in axolotls, which are challenging to modify with the homology-independent method. Additionally, we integrate the inducible Cre cassette into intron-containing loci (e.g., Nkx2.2 and FoxA2) without introducing indels via semi-HDR. GOIs are properly expressed in F0 founders, with approximately 5%-10% showing precise integration confirmed by genotyping. Furthermore, using the Nkx2.2:CreER<sup>T2</sup> line, we fate-map spinal cord p3 neural progenitor cells, revealing that Nkx2.2<sup>+</sup> cells adopt different lineages in development and regeneration, preferentially generating motoneurons over oligodendrocytes during regeneration. Overall, this semi-HDR method balances efficiency and precision in GOI integration, providing a valuable tool for generating knock-in axolotls and potentially extending to other species.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.03.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The axolotl is broadly used in regenerative, developmental, and evolutionary biology research. Targeted gene knock-in is crucial for precision transgenesis, enabling disease modeling, visualization, tracking, and functional manipulation of specific cells or genes of interest (GOIs). Existing CRISPR/Cas9-mediated homology-independent method for gene knock-in often causes "scars/indels" at integration junctions. Here, we develop a CRISPR/Cas9-mediated semi-homology-directed recombination (HDR) knock-in method using a donor construct containing a single homology arm for precise GOI integration. This semi-HDR approach achieves seamless single-end integration of the Cherry reporter gene and a large inducible Cre cassette into intronless genes like Sox2 and Neurod6 in axolotls, which are challenging to modify with the homology-independent method. Additionally, we integrate the inducible Cre cassette into intron-containing loci (e.g., Nkx2.2 and FoxA2) without introducing indels via semi-HDR. GOIs are properly expressed in F0 founders, with approximately 5%-10% showing precise integration confirmed by genotyping. Furthermore, using the Nkx2.2:CreERT2 line, we fate-map spinal cord p3 neural progenitor cells, revealing that Nkx2.2+ cells adopt different lineages in development and regeneration, preferentially generating motoneurons over oligodendrocytes during regeneration. Overall, this semi-HDR method balances efficiency and precision in GOI integration, providing a valuable tool for generating knock-in axolotls and potentially extending to other species.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.