Low-dose Radiation Improves Tumor Immune Microenvironment, Enhancing the Effects of Anti-CTLA-4 Therapy.

IF 1.1 4区 医学 Q4 IMMUNOLOGY Iranian Journal of Immunology Pub Date : 2025-03-10 DOI:10.22034/iji.2025.103258.2825
Jigang Dong, Ying Qi, Sha Sha
{"title":"Low-dose Radiation Improves Tumor Immune Microenvironment, Enhancing the Effects of Anti-CTLA-4 Therapy.","authors":"Jigang Dong, Ying Qi, Sha Sha","doi":"10.22034/iji.2025.103258.2825","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Radiotherapy destroys tumor cells primarily through direct DNA damage by high-energy particles or indirect DNA damage by free radicals. High-dose radiotherapy (HDR) destroys tumor cells while also damaging normal cells and may potentially cause immunosuppression. The effect of low-dose radiotherapy (LDR) on the tumor microenvironment (TME) may differ from those of HDR.</p><p><strong>Objective: </strong>To determine if combining low-dose radiotherapy with immune checkpoint inhibitors results in synergistic effects.</p><p><strong>Methods: </strong>We established a mouse model for lung cancer and categorized mice into 4 cohorts: NC (negative control) cohort, LDR cohort, anti-CTLA-4 cohort, and LDR+anti-CTLA-4 cohort. Changes in tumor volume were observed in each group, with particular attention given to the variations in immune cells and cytokines within the mouse tumors following LDR.</p><p><strong>Results: </strong>The mice in the LDR+anti-CTLA-4 group exhibited the slowest growth in tumor volume, and low-dose radiotherapy tended to inhibit tumor growth. The proportion of infiltrating CD8+T cells increased and the proportion of infiltrating Treg cells decreased in the tumor after LDR. The levels of interferon (IFN) and the chemokines CXCL9, CXCL10 and CXCL11 were increased after low-dose radiotherapy.</p><p><strong>Conclusion: </strong>LDR has the ability to alter the immune microenvironment of tumors by promoting the production of IFN. Additionally, when combined with anti-CTLA-4, whole-body LDR can effectively suppress tumor growth in mice. The finding is of potential clinical significance and deserves further exploration.</p>","PeriodicalId":54921,"journal":{"name":"Iranian Journal of Immunology","volume":"22 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22034/iji.2025.103258.2825","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Radiotherapy destroys tumor cells primarily through direct DNA damage by high-energy particles or indirect DNA damage by free radicals. High-dose radiotherapy (HDR) destroys tumor cells while also damaging normal cells and may potentially cause immunosuppression. The effect of low-dose radiotherapy (LDR) on the tumor microenvironment (TME) may differ from those of HDR.

Objective: To determine if combining low-dose radiotherapy with immune checkpoint inhibitors results in synergistic effects.

Methods: We established a mouse model for lung cancer and categorized mice into 4 cohorts: NC (negative control) cohort, LDR cohort, anti-CTLA-4 cohort, and LDR+anti-CTLA-4 cohort. Changes in tumor volume were observed in each group, with particular attention given to the variations in immune cells and cytokines within the mouse tumors following LDR.

Results: The mice in the LDR+anti-CTLA-4 group exhibited the slowest growth in tumor volume, and low-dose radiotherapy tended to inhibit tumor growth. The proportion of infiltrating CD8+T cells increased and the proportion of infiltrating Treg cells decreased in the tumor after LDR. The levels of interferon (IFN) and the chemokines CXCL9, CXCL10 and CXCL11 were increased after low-dose radiotherapy.

Conclusion: LDR has the ability to alter the immune microenvironment of tumors by promoting the production of IFN. Additionally, when combined with anti-CTLA-4, whole-body LDR can effectively suppress tumor growth in mice. The finding is of potential clinical significance and deserves further exploration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Iranian Journal of Immunology
Iranian Journal of Immunology Medicine-Immunology and Allergy
CiteScore
1.60
自引率
0.00%
发文量
50
审稿时长
12 weeks
期刊介绍: The Iranian Journal of Immunology (I.J.I) is an internationally disseminated peer-reviewed publication and publishes a broad range of experimental and theoretical studies concerned with all aspects of immunology.
期刊最新文献
Low-dose Radiation Improves Tumor Immune Microenvironment, Enhancing the Effects of Anti-CTLA-4 Therapy. Interaction Between Tfh/Tfr Ratio and Regulatory B Cell in Autoimmune Diseases. circ_0001006 Promotes Immune Escape in Non-small Cell Lung Cancer by Regulating the miR-320a/PD-L1 Axis. Evaluation of Patients with Combined Immunodeficiency: A Single Center Experience. Gamma-delta T Cells in Bladder Cancer Draining Lymph Nodes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1