Epithelial-mesenchymal transition couples with cell cycle arrest at various stages.

Sophia Hu, Yong Lu, Gaohan Yu, Zhiqian Zheng, Weikang Wang, Ke Ni, Amitava Giri, Jingyu Zhang, Yan Zhang, Kazuhide Watanabe, Guang Yao, Jianhua Xing
{"title":"Epithelial-mesenchymal transition couples with cell cycle arrest at various stages.","authors":"Sophia Hu, Yong Lu, Gaohan Yu, Zhiqian Zheng, Weikang Wang, Ke Ni, Amitava Giri, Jingyu Zhang, Yan Zhang, Kazuhide Watanabe, Guang Yao, Jianhua Xing","doi":"10.1101/2025.02.24.639880","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous computational approaches have been developed to infer cell state transition trajectories from snapshot single-cell data. Most approaches first require projecting high-dimensional data onto a low-dimensional representation, raising the question of whether the dynamics of the system become distorted. Using epithelial-to-mesenchymal transition (EMT) as a test system, we show that both biology-guided low-dimensional representations and stochastic trajectory simulations in high-dimensional state space, not representations obtained with <i>brute force</i> dimension-reduction methods, reveal multiple distinct paths of TGF-β-induced EMT. The paths arise from coupling between EMT and cell cycle arrest at either the G1/S, G2/M or M checkpoints, contributing to cell-cycle related EMT heterogeneity. The present study emphasizes that caution should be taken when inferring transition dynamics from snapshot single-cell data in two- or three-dimensional representations, and that incorporating dynamical information can improve prediction accuracy.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888286/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.24.639880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous computational approaches have been developed to infer cell state transition trajectories from snapshot single-cell data. Most approaches first require projecting high-dimensional data onto a low-dimensional representation, raising the question of whether the dynamics of the system become distorted. Using epithelial-to-mesenchymal transition (EMT) as a test system, we show that both biology-guided low-dimensional representations and stochastic trajectory simulations in high-dimensional state space, not representations obtained with brute force dimension-reduction methods, reveal multiple distinct paths of TGF-β-induced EMT. The paths arise from coupling between EMT and cell cycle arrest at either the G1/S, G2/M or M checkpoints, contributing to cell-cycle related EMT heterogeneity. The present study emphasizes that caution should be taken when inferring transition dynamics from snapshot single-cell data in two- or three-dimensional representations, and that incorporating dynamical information can improve prediction accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
上皮-间质转化与细胞周期阻滞在不同阶段相结合。
已经开发了许多计算方法来从快照单细胞数据推断细胞状态转移轨迹。大多数方法首先需要将高维数据投射到低维表示上,这就提出了系统动力学是否会被扭曲的问题。以上皮间质转化(epithelial-to- mesenchal transition, EMT)为测试系统,我们发现生物引导的低维表征和高维状态空间的随机轨迹模拟,而不是用蛮力降维方法获得的表征,揭示了TGF-β诱导的EMT的多种不同路径。在G1/S、G2/M或M检查点,EMT和细胞周期阻滞之间的耦合产生了这些通路,导致了细胞周期相关的EMT异质性。本研究强调,从二维或三维表示的快照单细胞数据推断过渡动态时应谨慎,并且结合动态信息可以提高预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BESTish: A Diffusion-Approximation Framework for Inferring Selection and Mutation in Clonal Hematopoiesis. MTFP1 preserves β-cell cristae structure and bioenergetics to ensure insulin release and glucose homeostasis. An Integrated Single-Cell and Epigenomic Resource for Comparative Analysis of the Basal Ganglia. The Extremely Brilliant Brain: An Isotropic Microscale Human Brain Dataset. Ketone bodies mitigate against systemic inflammation-induced changes in brain energy metabolism and delirium-like deficits in aged mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1