Estimating the cis -heritability of gene expression using single cell expression profiles controls false positive rate of eGene detection.

Ziqi Xu, Arya Massarat, Laurie Rumker, Melissa Gymrek, Soumya Raychaudhuri, Wei Zhou, Tiffany Amariuta
{"title":"Estimating the <i>cis</i> -heritability of gene expression using single cell expression profiles controls false positive rate of eGene detection.","authors":"Ziqi Xu, Arya Massarat, Laurie Rumker, Melissa Gymrek, Soumya Raychaudhuri, Wei Zhou, Tiffany Amariuta","doi":"10.1101/2025.02.24.639892","DOIUrl":null,"url":null,"abstract":"<p><p>For gene expression traits, <i>cis</i> -genetic heritability can quantify the strength of genetic regulation in particular cell types, elucidating the cell-type-specificity of disease variants and genes. To estimate gene expression heritability, standard models require a single gene expression value per individual, forcing data from single cell RNA-sequencing (scRNA-seq) experiments to be \"pseudobulked\". Here, we show that applying standard heritability models to pseudobulk data overestimates gene expression heritability and produces inflated false positive rates for detecting <i>cis</i> -heritable genes. Therefore, we introduce a new method called scGeneHE ( s ingle c ell Gene expression H eritability E stimation), a Poisson mixed-effects model that quantifies the <i>cis</i> -genetic component of gene expression using individual cellular profiles. In simulations, scGeneHE has a consistently well-calibrated false positive rate for eGene detection and unbiasedly estimates <i>cis</i> -heritability at many parameter settings. We applied scGeneHE to scRNA-seq data from 969 individuals, 11 immune cell types, and 822,552 cells from the OneK1K cohort to infer cell-type-specificity of genetic regulation at risk genes for immune-mediated diseases and trace the fluctuation of <i>cis</i> -heritability across cellular populations of varying resolution. In summary, we developed a new statistical method that resolves the analytical challenge of estimating gene expression <i>cis</i> -heritability from native scRNA-seq data.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.24.639892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For gene expression traits, cis -genetic heritability can quantify the strength of genetic regulation in particular cell types, elucidating the cell-type-specificity of disease variants and genes. To estimate gene expression heritability, standard models require a single gene expression value per individual, forcing data from single cell RNA-sequencing (scRNA-seq) experiments to be "pseudobulked". Here, we show that applying standard heritability models to pseudobulk data overestimates gene expression heritability and produces inflated false positive rates for detecting cis -heritable genes. Therefore, we introduce a new method called scGeneHE ( s ingle c ell Gene expression H eritability E stimation), a Poisson mixed-effects model that quantifies the cis -genetic component of gene expression using individual cellular profiles. In simulations, scGeneHE has a consistently well-calibrated false positive rate for eGene detection and unbiasedly estimates cis -heritability at many parameter settings. We applied scGeneHE to scRNA-seq data from 969 individuals, 11 immune cell types, and 822,552 cells from the OneK1K cohort to infer cell-type-specificity of genetic regulation at risk genes for immune-mediated diseases and trace the fluctuation of cis -heritability across cellular populations of varying resolution. In summary, we developed a new statistical method that resolves the analytical challenge of estimating gene expression cis -heritability from native scRNA-seq data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用单细胞表达谱估计基因表达的顺式遗传力可以控制eGene检测的假阳性率。
对于基因表达性状,顺式遗传力可以量化特定细胞类型中遗传调控的强度,阐明疾病变异和基因的细胞类型特异性。为了估计基因表达遗传性,标准模型需要每个个体的单个基因表达值,这迫使来自单细胞rna测序(scRNA-seq)实验的数据被“伪体积化”。在这里,我们表明将标准遗传力模型应用于伪体数据高估了基因表达遗传力,并在检测顺式遗传基因时产生膨胀的假阳性率。因此,我们引入了一种名为scGeneHE(单个细胞基因表达和可遗传性估计)的新方法,这是一种泊松混合效应模型,可以使用单个细胞谱量化基因表达的顺式遗传成分。在模拟中,scGeneHE对eGene检测具有一致的校准良好的假阳性率,并且在许多参数设置下无偏倚地估计顺式遗传性。我们将scGeneHE应用于969个个体、11种免疫细胞类型和来自OneK1K队列的822,552个细胞的scRNA-seq数据,以推断免疫介导疾病风险基因遗传调控的细胞类型特异性,并追踪不同分辨率细胞群体中顺式遗传力的波动。总之,我们开发了一种新的统计方法,解决了从天然scRNA-seq数据估计基因表达顺式遗传力的分析挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BESTish: A Diffusion-Approximation Framework for Inferring Selection and Mutation in Clonal Hematopoiesis. MTFP1 preserves β-cell cristae structure and bioenergetics to ensure insulin release and glucose homeostasis. An Integrated Single-Cell and Epigenomic Resource for Comparative Analysis of the Basal Ganglia. The Extremely Brilliant Brain: An Isotropic Microscale Human Brain Dataset. Ketone bodies mitigate against systemic inflammation-induced changes in brain energy metabolism and delirium-like deficits in aged mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1