Amphetamine in Adolescence Induces a Sex-Specific Mesolimbic Dopamine Phenotype in the Adult Prefrontal Cortex.

G Hernandez, J Zhao, Z Niu, D MacGowan, T Capolicchio, A Song, S Gul, A Moiz, I Herrera, J J Day, C Flores
{"title":"Amphetamine in Adolescence Induces a Sex-Specific Mesolimbic Dopamine Phenotype in the Adult Prefrontal Cortex.","authors":"G Hernandez, J Zhao, Z Niu, D MacGowan, T Capolicchio, A Song, S Gul, A Moiz, I Herrera, J J Day, C Flores","doi":"10.1101/2025.02.26.640363","DOIUrl":null,"url":null,"abstract":"<p><p>Drugs of abuse in adolescence impact brain maturation and increase psychiatric risk, with differences in sensitivity between males and females. Amphetamine in adolescent male, but not female mice, causes dopamine axons intended to innervate the nucleus accumbens and to grow ectopically to the prefrontal cortex (PFC). This is mediated by drug-induced downregulation of the Netrin-1 receptor DCC. How off-target dopamine axons function in the adult PFC remains to be determined. Here we report that males and females show place preference for amphetamine in adolescence. However, only in males, amphetamine increases PFC dopamine transporter expression in adulthood: leading to aberrant baseline dopamine transients, faster dopamine release, and exaggerated responses to acute methylphenidate. Upregulation of DCC in adolescence, using CRISPRa, prevents all these changes. Mesolimbic dopamine axons rerouted to the PFC in adolescence retain anatomical and functional phenotypes of their intended target, rendering males enduringly vulnerable to the harmful effects of drugs of abuse.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.26.640363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Drugs of abuse in adolescence impact brain maturation and increase psychiatric risk, with differences in sensitivity between males and females. Amphetamine in adolescent male, but not female mice, causes dopamine axons intended to innervate the nucleus accumbens and to grow ectopically to the prefrontal cortex (PFC). This is mediated by drug-induced downregulation of the Netrin-1 receptor DCC. How off-target dopamine axons function in the adult PFC remains to be determined. Here we report that males and females show place preference for amphetamine in adolescence. However, only in males, amphetamine increases PFC dopamine transporter expression in adulthood: leading to aberrant baseline dopamine transients, faster dopamine release, and exaggerated responses to acute methylphenidate. Upregulation of DCC in adolescence, using CRISPRa, prevents all these changes. Mesolimbic dopamine axons rerouted to the PFC in adolescence retain anatomical and functional phenotypes of their intended target, rendering males enduringly vulnerable to the harmful effects of drugs of abuse.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Infection characteristics among Serratia marcescens capsule lineages. Functional redundancy between penicillin-binding proteins during asymmetric cell division in Clostridioides difficile. Pyruvate and Related Energetic Metabolites Modulate Resilience Against High Genetic Risk for Glaucoma. Computational Analysis of the Gut Microbiota-Mediated Drug Metabolism. Jointly representing long-range genetic similarity and spatially heterogeneous isolation-by-distance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1