Enhanced fluorescence lifetime imaging microscopy denoising via principal component analysis.

Soheil Soltani, Jack G Paulson, Emma J Fong, Shannon M Mumenthaler, Andrea M Armani
{"title":"Enhanced fluorescence lifetime imaging microscopy denoising via principal component analysis.","authors":"Soheil Soltani, Jack G Paulson, Emma J Fong, Shannon M Mumenthaler, Andrea M Armani","doi":"10.1101/2025.02.26.640419","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence Lifetime Imaging Microscopy (FLIM) quantifies the autofluorescence lifetime to measure cellular metabolism, therapeutic efficacy, and disease progression. These dynamic processes are intrinsically heterogeneous, increasing the complexity of the signal analysis. Often noise reduction strategies that combine thresholding and non-selective data smoothing filters are applied. These can result in error introduction and data loss. To mitigate these issues, we develop noise-corrected principal component analysis (NC-PCA). This approach isolates the signal of interest by selectively identifying and removing the noise. To validate NC-PCA, a secondary analysis of FLIM images of patient-derived colorectal cancer organoids exposed to a range of therapeutics was performed. First, we demonstrate that NC-PCA decreases the uncertainty up to 4-fold in comparison to conventional analysis with no data loss. Then, using a merged data set, we show that NC-PCA, unlike conventional methods, identifies multiple metabolic states. Thus, NC-PCA provides an enabling tool to advance FLIM analysis across fields.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888454/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.26.640419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorescence Lifetime Imaging Microscopy (FLIM) quantifies the autofluorescence lifetime to measure cellular metabolism, therapeutic efficacy, and disease progression. These dynamic processes are intrinsically heterogeneous, increasing the complexity of the signal analysis. Often noise reduction strategies that combine thresholding and non-selective data smoothing filters are applied. These can result in error introduction and data loss. To mitigate these issues, we develop noise-corrected principal component analysis (NC-PCA). This approach isolates the signal of interest by selectively identifying and removing the noise. To validate NC-PCA, a secondary analysis of FLIM images of patient-derived colorectal cancer organoids exposed to a range of therapeutics was performed. First, we demonstrate that NC-PCA decreases the uncertainty up to 4-fold in comparison to conventional analysis with no data loss. Then, using a merged data set, we show that NC-PCA, unlike conventional methods, identifies multiple metabolic states. Thus, NC-PCA provides an enabling tool to advance FLIM analysis across fields.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用主成分分析增强荧光寿命成像显微镜去噪。
荧光寿命成像显微镜(FLIM)量化自身荧光寿命来测量细胞代谢、治疗效果和疾病进展。这些动态过程本质上是异构的,增加了信号分析的复杂性。通常采用结合阈值和非选择性数据平滑滤波器的降噪策略。这可能导致引入错误和数据丢失。为了缓解这些问题,我们开发了噪声校正主成分分析(NC-PCA)。这种方法通过选择性地识别和去除噪声来隔离感兴趣的信号。为了验证NC-PCA,对暴露于一系列治疗药物的患者来源的结直肠癌类器官的FLIM图像进行了二次分析。首先,我们证明,与没有数据丢失的传统分析相比,NC-PCA将不确定性降低了4倍。然后,使用合并的数据集,我们表明NC-PCA与传统方法不同,可以识别多种代谢状态。因此,NC-PCA为跨领域推进FLIM分析提供了一个有利的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural basis of caveolin-driven membrane bending. Cellular coding of ingestion in the caudal brainstem. Depth-Sensitive Optical Property Characterization Using Multi-Frequency Laparoscopic SFDI. DiCoLo: Integration-free and cluster-free detection of localized differential gene co-expression in single-cell data. Comparing Multislice Projections of MD Simulations with CryoEM Exposes Structural Prediction Errors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1