Deep learning approach to parameter optimization for physiological models.

Xiaoyu Duan, Vipul Periwal
{"title":"Deep learning approach to parameter optimization for physiological models.","authors":"Xiaoyu Duan, Vipul Periwal","doi":"10.1101/2025.02.25.639944","DOIUrl":null,"url":null,"abstract":"<p><p>The inference of nonlinear dynamics and parameters in biological data modeling is challenging. Conventional methodologies, based on hypothetical underlying mechanisms, complicate inference because standard parameter optimization methods are difficult to constrain to biological ranges. Here, we propose a novel method to evaluate and improve putative models using neural networks to simultaneously address biological modeling, parametrization, and parameter inference. As an example, utilizing data from clinical frequently sampled intravenous glucose tolerance testing, we introduce two physiological lipolysis models (with parameters) of the dynamics of glucose, insulin, and free fatty acids (FFA). Parameter values are obtained via optimization from the limited clinical data. We then generate large quantities of simulated data from the model by sampling parameters within physiological ranges. A convolutional neural network is trained to take the simulated data time courses of glucose, insulin, and FFA as input and output the model parameters. The performance of the trained neural network is evaluated for both parameter inference and reconstruction of trajectories over a testing dataset and from optimized model-fitting curves. We show that our methodology enables accurate parameter inference and trajectory reconstruction over the testing dataset and optimized model-fitting curves. The trained neural network produces consistently high <i>R</i> <sup>2</sup> values and low <i>p</i> -values across different feature engineering strategies and training dataset sizes. We assess the impact of feature engineering choices and training dataset size on inference performance, demonstrating that appropriately designed feature transformations and certain activation function improve accuracy. Our results establish a deep learning framework for parameter inference in mathematical models, which can be adapted to various physiological systems.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888287/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.25.639944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The inference of nonlinear dynamics and parameters in biological data modeling is challenging. Conventional methodologies, based on hypothetical underlying mechanisms, complicate inference because standard parameter optimization methods are difficult to constrain to biological ranges. Here, we propose a novel method to evaluate and improve putative models using neural networks to simultaneously address biological modeling, parametrization, and parameter inference. As an example, utilizing data from clinical frequently sampled intravenous glucose tolerance testing, we introduce two physiological lipolysis models (with parameters) of the dynamics of glucose, insulin, and free fatty acids (FFA). Parameter values are obtained via optimization from the limited clinical data. We then generate large quantities of simulated data from the model by sampling parameters within physiological ranges. A convolutional neural network is trained to take the simulated data time courses of glucose, insulin, and FFA as input and output the model parameters. The performance of the trained neural network is evaluated for both parameter inference and reconstruction of trajectories over a testing dataset and from optimized model-fitting curves. We show that our methodology enables accurate parameter inference and trajectory reconstruction over the testing dataset and optimized model-fitting curves. The trained neural network produces consistently high R 2 values and low p -values across different feature engineering strategies and training dataset sizes. We assess the impact of feature engineering choices and training dataset size on inference performance, demonstrating that appropriately designed feature transformations and certain activation function improve accuracy. Our results establish a deep learning framework for parameter inference in mathematical models, which can be adapted to various physiological systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Infection characteristics among Serratia marcescens capsule lineages. Functional redundancy between penicillin-binding proteins during asymmetric cell division in Clostridioides difficile. Pyruvate and Related Energetic Metabolites Modulate Resilience Against High Genetic Risk for Glaucoma. Computational Analysis of the Gut Microbiota-Mediated Drug Metabolism. Jointly representing long-range genetic similarity and spatially heterogeneous isolation-by-distance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1