Pathway Coessentiality Mapping Reveals Complex II is Required for de novo Purine Biosynthesis in Acute Myeloid Leukemia.

Amy E Stewart, Derek K Zachman, Pol Castellano-Escuder, Lois M Kelly, Ben Zolyomi, Michael D I Aiduk, Christopher D Delaney, Ian C Lock, Claudie Bosc, John Bradley, Shane T Killarney, Olga R Ilkayeva, Christopher B Newgard, Navdeep S Chandel, Alexandre Puissant, Kris C Wood, Matthew D Hirschey
{"title":"Pathway Coessentiality Mapping Reveals Complex II is Required for <i>de novo</i> Purine Biosynthesis in Acute Myeloid Leukemia.","authors":"Amy E Stewart, Derek K Zachman, Pol Castellano-Escuder, Lois M Kelly, Ben Zolyomi, Michael D I Aiduk, Christopher D Delaney, Ian C Lock, Claudie Bosc, John Bradley, Shane T Killarney, Olga R Ilkayeva, Christopher B Newgard, Navdeep S Chandel, Alexandre Puissant, Kris C Wood, Matthew D Hirschey","doi":"10.1101/2025.02.26.640463","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how cellular pathways interact is crucial for treating complex diseases like cancer, yet our ability to map these connections systematically remains limited. Individual gene-gene interaction studies have provided insights <sup>1,2</sup> , but they miss the emergent properties of pathways working together. To address this challenge, we developed a multi-gene approach to pathway mapping and applied it to CRISPR data from the Cancer Dependency Map <sup>3</sup> . Our analysis of the electron transport chain revealed certain blood cancers, including acute myeloid leukemia (AML), depend on an unexpected link between Complex II and purine metabolism. Through stable isotope metabolomic tracing, we found that Complex II directly supports <i>de novo</i> purine biosynthesis and exogenous purines rescue AML from Complex II inhibition. The mechanism involves a metabolic circuit where glutamine provides nitrogen to build the purine ring, producing glutamate that Complex II must oxidize to sustain purine synthesis. This connection translated to a metabolic vulnerability whereby increasing intracellular glutamate levels suppresses purine production and sensitizes AML to Complex II inhibition. In mouse models, targeting Complex II triggered rapid disease regression and extended survival in aggressive AML. The clinical relevance of this pathway emerged in human studies, where higher Complex II gene expression correlates with both resistance to mitochondria-targeted therapies and worse survival outcomes specifically in AML patients. These findings establish Complex II as a central regulator of <i>de novo</i> purine biosynthesis and identify it as a promising therapeutic target in AML.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888402/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.26.640463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how cellular pathways interact is crucial for treating complex diseases like cancer, yet our ability to map these connections systematically remains limited. Individual gene-gene interaction studies have provided insights 1,2 , but they miss the emergent properties of pathways working together. To address this challenge, we developed a multi-gene approach to pathway mapping and applied it to CRISPR data from the Cancer Dependency Map 3 . Our analysis of the electron transport chain revealed certain blood cancers, including acute myeloid leukemia (AML), depend on an unexpected link between Complex II and purine metabolism. Through stable isotope metabolomic tracing, we found that Complex II directly supports de novo purine biosynthesis and exogenous purines rescue AML from Complex II inhibition. The mechanism involves a metabolic circuit where glutamine provides nitrogen to build the purine ring, producing glutamate that Complex II must oxidize to sustain purine synthesis. This connection translated to a metabolic vulnerability whereby increasing intracellular glutamate levels suppresses purine production and sensitizes AML to Complex II inhibition. In mouse models, targeting Complex II triggered rapid disease regression and extended survival in aggressive AML. The clinical relevance of this pathway emerged in human studies, where higher Complex II gene expression correlates with both resistance to mitochondria-targeted therapies and worse survival outcomes specifically in AML patients. These findings establish Complex II as a central regulator of de novo purine biosynthesis and identify it as a promising therapeutic target in AML.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Infection characteristics among Serratia marcescens capsule lineages. Functional redundancy between penicillin-binding proteins during asymmetric cell division in Clostridioides difficile. Pyruvate and Related Energetic Metabolites Modulate Resilience Against High Genetic Risk for Glaucoma. Computational Analysis of the Gut Microbiota-Mediated Drug Metabolism. Jointly representing long-range genetic similarity and spatially heterogeneous isolation-by-distance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1