The phagosome-mediated anti-bacterial immunity is governed by the proton-activated chloride channel in peritoneal macrophages.

Henry Yi Cheng, Jiachen Chu, Nathachit Limjunyawong, Jianan Chen, Yingzhi Ye, Kevin Hong Chen, Nicholas Koylass, Shuying Sun, Xinzhong Dong, Zhaozhu Qiu
{"title":"The phagosome-mediated anti-bacterial immunity is governed by the proton-activated chloride channel in peritoneal macrophages.","authors":"Henry Yi Cheng, Jiachen Chu, Nathachit Limjunyawong, Jianan Chen, Yingzhi Ye, Kevin Hong Chen, Nicholas Koylass, Shuying Sun, Xinzhong Dong, Zhaozhu Qiu","doi":"10.1101/2025.02.27.640612","DOIUrl":null,"url":null,"abstract":"<p><p>Phagosome degradation is an evolutionally conserved and highly effective innate immune response against pathogen infections. The success of this process relies on the ability of phagocytes to regulate the maturation of phagosomes. However, the underlying molecular mechanisms and its roles in shaping downstream immune activation remain poorly understood. Here, we identify the proton-activated chloride (PAC) channel as a key negative regulator of phagosome maturation. PAC deletion enhanced phagosomal acidification and protease activities, leading to augmented bacterial killing in large peritoneal macrophages (LPMs) upon peritoneal <i>Escherichia coli</i> infection in mice. Surprisingly, phagosome bacterial degradation also stimulated STING-IRF3-interferon responses and inflammasome activation in LPMs, both of which are enhanced upon PAC deletion. The increased inflammasome activation and pyroptosis induced an unexpected release of cleaved gasdermin D, which localized to the surface of bacteria in the peritoneum and further contributed to their killing. Finally, enhanced bacterial clearance by PAC-deficient LPMs reduced proinflammatory immune cell infiltration and overall peritoneal inflammation, resulting in improved survival in mice. Our study thus provides new insights into the molecular mechanism of phagosome maturation and the dynamics of host defense response following phagosome-mediated bacterial degradation in peritoneal macrophages. It also highlights the potential of targeting the PAC channel as a therapeutic strategy for treating bacterial infections.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.27.640612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phagosome degradation is an evolutionally conserved and highly effective innate immune response against pathogen infections. The success of this process relies on the ability of phagocytes to regulate the maturation of phagosomes. However, the underlying molecular mechanisms and its roles in shaping downstream immune activation remain poorly understood. Here, we identify the proton-activated chloride (PAC) channel as a key negative regulator of phagosome maturation. PAC deletion enhanced phagosomal acidification and protease activities, leading to augmented bacterial killing in large peritoneal macrophages (LPMs) upon peritoneal Escherichia coli infection in mice. Surprisingly, phagosome bacterial degradation also stimulated STING-IRF3-interferon responses and inflammasome activation in LPMs, both of which are enhanced upon PAC deletion. The increased inflammasome activation and pyroptosis induced an unexpected release of cleaved gasdermin D, which localized to the surface of bacteria in the peritoneum and further contributed to their killing. Finally, enhanced bacterial clearance by PAC-deficient LPMs reduced proinflammatory immune cell infiltration and overall peritoneal inflammation, resulting in improved survival in mice. Our study thus provides new insights into the molecular mechanism of phagosome maturation and the dynamics of host defense response following phagosome-mediated bacterial degradation in peritoneal macrophages. It also highlights the potential of targeting the PAC channel as a therapeutic strategy for treating bacterial infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Infection characteristics among Serratia marcescens capsule lineages. Functional redundancy between penicillin-binding proteins during asymmetric cell division in Clostridioides difficile. Pyruvate and Related Energetic Metabolites Modulate Resilience Against High Genetic Risk for Glaucoma. Computational Analysis of the Gut Microbiota-Mediated Drug Metabolism. Jointly representing long-range genetic similarity and spatially heterogeneous isolation-by-distance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1