Predicting the Regenerative Potential of Retinal Ganglion Cells Based on Developmental Growth Trajectories.

Joana Rf Santos, Chen Li, Lien Andries, Luca Masin, Bram Nuttin, Katja Reinhard, Lieve Moons, Hermann Cuntz, Karl Farrow
{"title":"Predicting the Regenerative Potential of Retinal Ganglion Cells Based on Developmental Growth Trajectories.","authors":"Joana Rf Santos, Chen Li, Lien Andries, Luca Masin, Bram Nuttin, Katja Reinhard, Lieve Moons, Hermann Cuntz, Karl Farrow","doi":"10.1101/2025.02.28.640775","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal ganglion cells in the mammalian central nervous system fail to regenerate following injury, with the capacity to survive and regrow varying by cell type. This variability may be linked to differences in developmental programs that overlap with the genetic pathways that mediate regeneration. To explore this correlation, we compared the structural changes in mouse retinal ganglion cells during development with those occurring after axonal injury. The dendritic trees of over 1,000 ganglion cells were reconstructed at different developmental stages, revealing that each cell type follows a distinct timeline. ON-sustained (sONα) cells reach maturity by P14, whereas ON-transient (tONα) cells achieve their maximum dendritic size by P10. Modeling of the dendritic changes indicate that while sONα and tONα follow similar growth programs the onset of growth was later in sONα. After optic nerve crush, the remodeling of dendritic architecture differed between the two cell-types. sONα cells exhibited rapid dendritic shrinkage, while tONα cells shrank more gradually with changes in branching features. Following injury, sONα cells reverted to an earlier developmental state than tONα cells. In addition, after co-deletion of PTEN and SOC3, neurons appeared to regress further back in developmental time. Our results provide evidence that a ganglion cell's resilience to injury and regenerative potential is predicted by its maturation timeline. Understanding these intrinsic differences could inform targeted neuroprotective interventions.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.28.640775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal ganglion cells in the mammalian central nervous system fail to regenerate following injury, with the capacity to survive and regrow varying by cell type. This variability may be linked to differences in developmental programs that overlap with the genetic pathways that mediate regeneration. To explore this correlation, we compared the structural changes in mouse retinal ganglion cells during development with those occurring after axonal injury. The dendritic trees of over 1,000 ganglion cells were reconstructed at different developmental stages, revealing that each cell type follows a distinct timeline. ON-sustained (sONα) cells reach maturity by P14, whereas ON-transient (tONα) cells achieve their maximum dendritic size by P10. Modeling of the dendritic changes indicate that while sONα and tONα follow similar growth programs the onset of growth was later in sONα. After optic nerve crush, the remodeling of dendritic architecture differed between the two cell-types. sONα cells exhibited rapid dendritic shrinkage, while tONα cells shrank more gradually with changes in branching features. Following injury, sONα cells reverted to an earlier developmental state than tONα cells. In addition, after co-deletion of PTEN and SOC3, neurons appeared to regress further back in developmental time. Our results provide evidence that a ganglion cell's resilience to injury and regenerative potential is predicted by its maturation timeline. Understanding these intrinsic differences could inform targeted neuroprotective interventions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Infection characteristics among Serratia marcescens capsule lineages. Functional redundancy between penicillin-binding proteins during asymmetric cell division in Clostridioides difficile. Pyruvate and Related Energetic Metabolites Modulate Resilience Against High Genetic Risk for Glaucoma. Computational Analysis of the Gut Microbiota-Mediated Drug Metabolism. Jointly representing long-range genetic similarity and spatially heterogeneous isolation-by-distance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1