Emily L Meany, Christian M Williams, Ye Eun Song, Vanessa M Doulames, Sophia J Bailey, Shoshana C Williams, Carolyn K Jons, Paige M Fox, Eric A Appel
{"title":"Preventing peritendinous adhesions using lubricious supramolecular hydrogels.","authors":"Emily L Meany, Christian M Williams, Ye Eun Song, Vanessa M Doulames, Sophia J Bailey, Shoshana C Williams, Carolyn K Jons, Paige M Fox, Eric A Appel","doi":"10.1101/2025.02.22.639655","DOIUrl":null,"url":null,"abstract":"<p><p>Of the 1.5 million emergency room visits each year in the United States due to flexor tendon injuries in the hand, over 30-40% result in peritendinous adhesions which can limit range of motion (ROM) and severely impact an individual's quality of life. Adhesions are fibrous scar-like tissues which can form between adjacent tissues in the body in response to injury, inflammation, or during normal healing following surgery. Currently, there is no widespread solution for adhesion prevention in the delicate space of the digit while allowing a patient full ROM quickly after surgery. There is a clear clinical need for a material capable of limiting adhesion formation which is simple to apply, does not impair healing, remains at the application site during motion and initial inflammation (days - weeks), and leaves tendon glide unencumbered. In this work, we developed dynamically crosslinked, bioresorbable supramolecular hydrogels as easy-to-apply lubricious barriers to prevent the formation of peritendinous adhesions. These hydrogels exhibit excellent long-term stability, injectability, and thermally stable viscoelastic properties that allow for simple storage and facile application. We evaluated interactions at the interface of the hydrogels and relevant tissues, including human tendon and skin, in shear and extensional stress modes and demonstrated a unique mechanism of adhesion prevention based on maintenance of a lubricious hydrogel barrier between tissues. <i>Ex vivo</i> studies show that the hydrogels did not impair the gliding behavior nor mechanical properties of tendons when applied in cadaveric human hands following clinically relevant flexor tendon repair. We further applied these hydrogels in a preclinical rat Achilles tendon injury model and observed prolonged local retention at the repair site as well as improved recovery of key functional metrics, including ROM and maximal dorsiflexion. Further, these hydrogels were safe and did not impair tendon strength nor healing compared to the current standard of care. These dynamic, biocompatible hydrogels present a novel solution to the significant problem of peritendinous adhesions with clear translational potential.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888243/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.22.639655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Of the 1.5 million emergency room visits each year in the United States due to flexor tendon injuries in the hand, over 30-40% result in peritendinous adhesions which can limit range of motion (ROM) and severely impact an individual's quality of life. Adhesions are fibrous scar-like tissues which can form between adjacent tissues in the body in response to injury, inflammation, or during normal healing following surgery. Currently, there is no widespread solution for adhesion prevention in the delicate space of the digit while allowing a patient full ROM quickly after surgery. There is a clear clinical need for a material capable of limiting adhesion formation which is simple to apply, does not impair healing, remains at the application site during motion and initial inflammation (days - weeks), and leaves tendon glide unencumbered. In this work, we developed dynamically crosslinked, bioresorbable supramolecular hydrogels as easy-to-apply lubricious barriers to prevent the formation of peritendinous adhesions. These hydrogels exhibit excellent long-term stability, injectability, and thermally stable viscoelastic properties that allow for simple storage and facile application. We evaluated interactions at the interface of the hydrogels and relevant tissues, including human tendon and skin, in shear and extensional stress modes and demonstrated a unique mechanism of adhesion prevention based on maintenance of a lubricious hydrogel barrier between tissues. Ex vivo studies show that the hydrogels did not impair the gliding behavior nor mechanical properties of tendons when applied in cadaveric human hands following clinically relevant flexor tendon repair. We further applied these hydrogels in a preclinical rat Achilles tendon injury model and observed prolonged local retention at the repair site as well as improved recovery of key functional metrics, including ROM and maximal dorsiflexion. Further, these hydrogels were safe and did not impair tendon strength nor healing compared to the current standard of care. These dynamic, biocompatible hydrogels present a novel solution to the significant problem of peritendinous adhesions with clear translational potential.