Prospective evaluation of structure-based simulations reveal their ability to predict the impact of kinase mutations on inhibitor binding.

Sukrit Singh, Vytautas Gapsys, Matteo Aldeghi, David Schaller, Aziz M Rangwala, Jessica B White, Joseph P Bluck, Jenke Scheen, William G Glass, Jiaye Guo, Sikander Hayat, Bert L de Groot, Andrea Volkamer, Clara D Christ, Markus A Seeliger, John D Chodera
{"title":"Prospective evaluation of structure-based simulations reveal their ability to predict the impact of kinase mutations on inhibitor binding.","authors":"Sukrit Singh, Vytautas Gapsys, Matteo Aldeghi, David Schaller, Aziz M Rangwala, Jessica B White, Joseph P Bluck, Jenke Scheen, William G Glass, Jiaye Guo, Sikander Hayat, Bert L de Groot, Andrea Volkamer, Clara D Christ, Markus A Seeliger, John D Chodera","doi":"10.1101/2024.11.15.623861","DOIUrl":null,"url":null,"abstract":"<p><p>Small molecule kinase inhibitors are critical in the modern treatment of cancers, evidenced by the existence of over 80 FDA-approved small-molecule kinase inhibitors. Unfortunately, intrinsic or acquired resistance, often causing therapy discontinuation, is frequently caused by mutations in the kinase therapeutic target. The advent of clinical tumor sequencing has opened additional opportunities for precision oncology to improve patient outcomes by pairing optimal therapies with tumor mutation profiles. However, modern precision oncology efforts are hindered by lack of sufficient biochemical or clinical evidence to classify each mutation as resistant or sensitive to existing inhibitors. Structure-based methods show promising accuracy in retrospective benchmarks at predicting whether a kinase mutation will perturb inhibitor binding, but comparisons are made by pooling disparate experimental measurements across different conditions. We present the first prospective benchmark of structure-based approaches on a blinded dataset of in-cell kinase inhibitor affinities to Abl kinase mutants using a NanoBRET reporter assay. We compare NanoBRET results to structure-based methods and their ability to estimate the impact of mutations on inhibitor binding (measured as ΔΔG). Comparing physics-based simulations, Rosetta, and previous machine learning models, we find that structure-based methods accurately classify kinase mutations as inhibitor-resistant or inhibitor-sensitizing, and each approach has a similar degree of accuracy. We show that physics-based simulations are best suited to estimate ΔΔG of mutations that are distal to the kinase active site. To probe modes of failure, we retrospectively investigate two clinically significant mutations poorly predicted by our methods, T315A and L298F, and find that starting configurations and protonation states significantly alter the accuracy of our predictions. Our experimental and computational measurements provide a benchmark for estimating the impact of mutations on inhibitor binding affinity for future methods and structure-based models. These structure-based methods have potential utility in identifying optimal therapies for tumor-specific mutations, predicting resistance mutations in the absence of clinical data, and identifying potential sensitizing mutations to established inhibitors.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888192/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.11.15.623861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Small molecule kinase inhibitors are critical in the modern treatment of cancers, evidenced by the existence of over 80 FDA-approved small-molecule kinase inhibitors. Unfortunately, intrinsic or acquired resistance, often causing therapy discontinuation, is frequently caused by mutations in the kinase therapeutic target. The advent of clinical tumor sequencing has opened additional opportunities for precision oncology to improve patient outcomes by pairing optimal therapies with tumor mutation profiles. However, modern precision oncology efforts are hindered by lack of sufficient biochemical or clinical evidence to classify each mutation as resistant or sensitive to existing inhibitors. Structure-based methods show promising accuracy in retrospective benchmarks at predicting whether a kinase mutation will perturb inhibitor binding, but comparisons are made by pooling disparate experimental measurements across different conditions. We present the first prospective benchmark of structure-based approaches on a blinded dataset of in-cell kinase inhibitor affinities to Abl kinase mutants using a NanoBRET reporter assay. We compare NanoBRET results to structure-based methods and their ability to estimate the impact of mutations on inhibitor binding (measured as ΔΔG). Comparing physics-based simulations, Rosetta, and previous machine learning models, we find that structure-based methods accurately classify kinase mutations as inhibitor-resistant or inhibitor-sensitizing, and each approach has a similar degree of accuracy. We show that physics-based simulations are best suited to estimate ΔΔG of mutations that are distal to the kinase active site. To probe modes of failure, we retrospectively investigate two clinically significant mutations poorly predicted by our methods, T315A and L298F, and find that starting configurations and protonation states significantly alter the accuracy of our predictions. Our experimental and computational measurements provide a benchmark for estimating the impact of mutations on inhibitor binding affinity for future methods and structure-based models. These structure-based methods have potential utility in identifying optimal therapies for tumor-specific mutations, predicting resistance mutations in the absence of clinical data, and identifying potential sensitizing mutations to established inhibitors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Infection characteristics among Serratia marcescens capsule lineages. Functional redundancy between penicillin-binding proteins during asymmetric cell division in Clostridioides difficile. Pyruvate and Related Energetic Metabolites Modulate Resilience Against High Genetic Risk for Glaucoma. Computational Analysis of the Gut Microbiota-Mediated Drug Metabolism. Jointly representing long-range genetic similarity and spatially heterogeneous isolation-by-distance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1