Run-length compressed metagenomic read classification with SMEM-finding and tagging.

Lore Depuydt, Omar Y Ahmed, Jan Fostier, Ben Langmead, Travis Gagie
{"title":"Run-length compressed metagenomic read classification with SMEM-finding and tagging.","authors":"Lore Depuydt, Omar Y Ahmed, Jan Fostier, Ben Langmead, Travis Gagie","doi":"10.1101/2025.02.25.640119","DOIUrl":null,"url":null,"abstract":"<p><p>Metagenomic read classification is a fundamental task in computational biology, yet it remains challenging due to the scale, diversity, and complexity of sequencing datasets. We propose a novel, lossless, run-length compressed index that enables efficient multi-class metagenomic classification in <i>O</i>(<i>r</i>) space, based on the move structure. Our method identifies all super-maximal exact matches (SMEMs) of length at least <i>L</i> between a read and the reference dataset and associates each SMEM with one class identifier using a sampled tag array. A consensus algorithm then compacts these SMEMs with their class identifier into a single classification per read. We are the first to perform run-length compressed read classification based on full SMEMs instead of semi-SMEMs. We evaluate our approach on both long and short reads in two conceptually distinct datasets: a large bacterial pan-genome with few metagenomic classes and a smaller 16S rRNA gene database spanning thousands of genera or classes. Our method consistently outperforms SPUMONI 2 in accuracy and runtime, with only a modest memory overhead. Compared to Cliffy, we demonstrate better memory efficiency while achieving superior accuracy on the simpler dataset and comparable performance on the more complex one. Overall, our implementation carefully balances accuracy, runtime, and memory usage, offering a versatile solution for metagenomic classification across diverse datasets. The open-source C++11 implementation is available at https://github.com/biointec/tagger under the AGPL-3.0 license.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888359/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.25.640119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metagenomic read classification is a fundamental task in computational biology, yet it remains challenging due to the scale, diversity, and complexity of sequencing datasets. We propose a novel, lossless, run-length compressed index that enables efficient multi-class metagenomic classification in O(r) space, based on the move structure. Our method identifies all super-maximal exact matches (SMEMs) of length at least L between a read and the reference dataset and associates each SMEM with one class identifier using a sampled tag array. A consensus algorithm then compacts these SMEMs with their class identifier into a single classification per read. We are the first to perform run-length compressed read classification based on full SMEMs instead of semi-SMEMs. We evaluate our approach on both long and short reads in two conceptually distinct datasets: a large bacterial pan-genome with few metagenomic classes and a smaller 16S rRNA gene database spanning thousands of genera or classes. Our method consistently outperforms SPUMONI 2 in accuracy and runtime, with only a modest memory overhead. Compared to Cliffy, we demonstrate better memory efficiency while achieving superior accuracy on the simpler dataset and comparable performance on the more complex one. Overall, our implementation carefully balances accuracy, runtime, and memory usage, offering a versatile solution for metagenomic classification across diverse datasets. The open-source C++11 implementation is available at https://github.com/biointec/tagger under the AGPL-3.0 license.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Infection characteristics among Serratia marcescens capsule lineages. Functional redundancy between penicillin-binding proteins during asymmetric cell division in Clostridioides difficile. Pyruvate and Related Energetic Metabolites Modulate Resilience Against High Genetic Risk for Glaucoma. Computational Analysis of the Gut Microbiota-Mediated Drug Metabolism. Jointly representing long-range genetic similarity and spatially heterogeneous isolation-by-distance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1