Scaling up spatial transcriptomics for large-sized tissues: uncovering cellular-level tissue architecture beyond conventional platforms with iSCALE.

Amelia Schroeder, Melanie Loth, Chunyu Luo, Sicong Yao, Hanying Yan, Daiwei Zhang, Sarbottam Piya, Edward Plowey, Wenxing Hu, Jean R Clemenceau, Inyeop Jang, Minji Kim, Isabel Barnfather, Su Jing Chan, Taylor L Reynolds, Thomas Carlile, Patrick Cullen, Ji-Youn Sung, Hui-Hsin Tsai, Jeong Hwan Park, Tae Hyun Hwang, Baohong Zhang, Mingyao Li
{"title":"Scaling up spatial transcriptomics for large-sized tissues: uncovering cellular-level tissue architecture beyond conventional platforms with iSCALE.","authors":"Amelia Schroeder, Melanie Loth, Chunyu Luo, Sicong Yao, Hanying Yan, Daiwei Zhang, Sarbottam Piya, Edward Plowey, Wenxing Hu, Jean R Clemenceau, Inyeop Jang, Minji Kim, Isabel Barnfather, Su Jing Chan, Taylor L Reynolds, Thomas Carlile, Patrick Cullen, Ji-Youn Sung, Hui-Hsin Tsai, Jeong Hwan Park, Tae Hyun Hwang, Baohong Zhang, Mingyao Li","doi":"10.1101/2025.02.25.640190","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in spatial transcriptomics (ST) technologies have transformed our ability to profile gene expression while retaining the crucial spatial context within tissues. However, existing ST platforms suffer from high costs, long turnaround times, low resolution, limited gene coverage, and small tissue capture areas, which hinder their broad applications. Here we present iSCALE, a method that predicts super-resolution gene expression and automatically annotates cellular-level tissue architecture for large-sized tissues that exceed the capture areas of standard ST platforms. The accuracy of iSCALE were validated by comprehensive evaluations, involving benchmarking experiments, immunohistochemistry staining, and manual annotation by pathologists. When applied to multiple sclerosis human brain samples, iSCALE uncovered lesion associated cellular characteristics that were undetectable by conventional ST experiments. Our results demonstrate iSCALE's utility in analyzing large-sized tissues with automatic and unbiased tissue annotation, inferring cell type composition, and pinpointing regions of interest for features not discernible through human visual assessment.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888418/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.25.640190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in spatial transcriptomics (ST) technologies have transformed our ability to profile gene expression while retaining the crucial spatial context within tissues. However, existing ST platforms suffer from high costs, long turnaround times, low resolution, limited gene coverage, and small tissue capture areas, which hinder their broad applications. Here we present iSCALE, a method that predicts super-resolution gene expression and automatically annotates cellular-level tissue architecture for large-sized tissues that exceed the capture areas of standard ST platforms. The accuracy of iSCALE were validated by comprehensive evaluations, involving benchmarking experiments, immunohistochemistry staining, and manual annotation by pathologists. When applied to multiple sclerosis human brain samples, iSCALE uncovered lesion associated cellular characteristics that were undetectable by conventional ST experiments. Our results demonstrate iSCALE's utility in analyzing large-sized tissues with automatic and unbiased tissue annotation, inferring cell type composition, and pinpointing regions of interest for features not discernible through human visual assessment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Infection characteristics among Serratia marcescens capsule lineages. Functional redundancy between penicillin-binding proteins during asymmetric cell division in Clostridioides difficile. Pyruvate and Related Energetic Metabolites Modulate Resilience Against High Genetic Risk for Glaucoma. Computational Analysis of the Gut Microbiota-Mediated Drug Metabolism. Jointly representing long-range genetic similarity and spatially heterogeneous isolation-by-distance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1