Parietal cortex is recruited by frontal and cingulate areas to support action monitoring and updating during stopping.

Jung Uk Kang, Layth Mattar, José Vergara, Victoria E Gobo, Hernan G Rey, Sarah R Heilbronner, Andrew J Watrous, Benjamin Y Hayden, Sameer A Sheth, Eleonora Bartoli
{"title":"Parietal cortex is recruited by frontal and cingulate areas to support action monitoring and updating during stopping.","authors":"Jung Uk Kang, Layth Mattar, José Vergara, Victoria E Gobo, Hernan G Rey, Sarah R Heilbronner, Andrew J Watrous, Benjamin Y Hayden, Sameer A Sheth, Eleonora Bartoli","doi":"10.1101/2025.02.28.640787","DOIUrl":null,"url":null,"abstract":"<p><p>Recent evidence indicates that the intraparietal sulcus (IPS) may play a causal role in action stopping, potentially representing a novel neuromodulation target for inhibitory control dysfunctions. Here, we leverage intracranial recordings in human subjects to establish the timing and directionality of information flow between IPS and prefrontal and cingulate regions during action stopping. Prior to successful inhibition, information flows primarily from the inferior frontal gyrus (IFG), a critical inhibitory control node, to IPS. In contrast, during stopping errors the communication between IPS and IFG is lacking, and IPS is engaged by posterior cingulate cortex, an area outside of the classical inhibition network and typically associated with default mode. Anterior cingulate and orbitofrontal cortex also display performance-dependent connectivity with IPS. Our functional connectivity results provide direct electrophysiological evidence that IPS is recruited by frontal and anterior cingulate areas to support action plan monitoring/updating, and by posterior cingulate during control failures.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888462/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.28.640787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent evidence indicates that the intraparietal sulcus (IPS) may play a causal role in action stopping, potentially representing a novel neuromodulation target for inhibitory control dysfunctions. Here, we leverage intracranial recordings in human subjects to establish the timing and directionality of information flow between IPS and prefrontal and cingulate regions during action stopping. Prior to successful inhibition, information flows primarily from the inferior frontal gyrus (IFG), a critical inhibitory control node, to IPS. In contrast, during stopping errors the communication between IPS and IFG is lacking, and IPS is engaged by posterior cingulate cortex, an area outside of the classical inhibition network and typically associated with default mode. Anterior cingulate and orbitofrontal cortex also display performance-dependent connectivity with IPS. Our functional connectivity results provide direct electrophysiological evidence that IPS is recruited by frontal and anterior cingulate areas to support action plan monitoring/updating, and by posterior cingulate during control failures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Infection characteristics among Serratia marcescens capsule lineages. Functional redundancy between penicillin-binding proteins during asymmetric cell division in Clostridioides difficile. Pyruvate and Related Energetic Metabolites Modulate Resilience Against High Genetic Risk for Glaucoma. Computational Analysis of the Gut Microbiota-Mediated Drug Metabolism. Jointly representing long-range genetic similarity and spatially heterogeneous isolation-by-distance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1