Smoothie: Efficient Inference of Spatial Co-expression Networks from Denoised Spatial Transcriptomics Data.

Chase Holdener, Iwijn De Vlaminck
{"title":"Smoothie: Efficient Inference of Spatial Co-expression Networks from Denoised Spatial Transcriptomics Data.","authors":"Chase Holdener, Iwijn De Vlaminck","doi":"10.1101/2025.02.26.640406","DOIUrl":null,"url":null,"abstract":"<p><p>Finding correlations in spatial gene expression is fundamental in spatial transcriptomics, as co-expressed genes within a tissue are linked by regulation, function, pathway, or cell type. Yet, sparsity and noise in spatial transcriptomics data pose significant analytical challenges. Here, we introduce Smoothie, a method that denoises spatial transcriptomics data with Gaussian smoothing and constructs and integrates genome-wide co-expression networks. Utilizing implicit and explicit parallelization, Smoothie scales to datasets exceeding 100 million spatially resolved spots with fast run times and low memory usage. We demonstrate how co-expression networks measured by Smoothie enable precise gene module detection, functional annotation of uncharacterized genes, linkage of gene expression to genome architecture, and multi-sample comparisons to assess stable or dynamic gene expression patterns across tissues, conditions, and time points. Overall, Smoothie provides a scalable and versatile framework for extracting deep biological insights from high-resolution spatial transcriptomics data.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888426/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.02.26.640406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finding correlations in spatial gene expression is fundamental in spatial transcriptomics, as co-expressed genes within a tissue are linked by regulation, function, pathway, or cell type. Yet, sparsity and noise in spatial transcriptomics data pose significant analytical challenges. Here, we introduce Smoothie, a method that denoises spatial transcriptomics data with Gaussian smoothing and constructs and integrates genome-wide co-expression networks. Utilizing implicit and explicit parallelization, Smoothie scales to datasets exceeding 100 million spatially resolved spots with fast run times and low memory usage. We demonstrate how co-expression networks measured by Smoothie enable precise gene module detection, functional annotation of uncharacterized genes, linkage of gene expression to genome architecture, and multi-sample comparisons to assess stable or dynamic gene expression patterns across tissues, conditions, and time points. Overall, Smoothie provides a scalable and versatile framework for extracting deep biological insights from high-resolution spatial transcriptomics data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smoothie:从去噪的空间转录组学数据有效推断空间共表达网络。
发现空间基因表达的相关性是空间转录组学的基础,因为组织内的共表达基因通过调控、功能、途径或细胞类型联系在一起。然而,空间转录组学数据的稀疏性和噪声给分析带来了重大挑战。在这里,我们介绍了Smoothie,这是一种使用高斯平滑对空间转录组学数据进行降噪并构建和整合全基因组共表达网络的方法。利用隐式和显式并行化,Smoothie扩展到超过1亿个空间分辨点的数据集,具有快速的运行时间和低内存使用。我们展示了Smoothie测量的共表达网络如何实现精确的基因模块检测、未表征基因的功能注释、基因表达与基因组结构的联系以及多样本比较,以评估跨组织、条件和时间点的稳定或动态基因表达模式。总体而言,Smoothie提供了一个可扩展和通用的框架,用于从高分辨率空间转录组学数据中提取深入的生物学见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cellular coding of ingestion in the caudal brainstem. Depth-Sensitive Optical Property Characterization Using Multi-Frequency Laparoscopic SFDI. DiCoLo: Integration-free and cluster-free detection of localized differential gene co-expression in single-cell data. Comparing Multislice Projections of MD Simulations with CryoEM Exposes Structural Prediction Errors. Hormonal control of postmitotic neuronal identity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1