Gold nanorods as multidimensional optical nanomaterials: machine learning-enhanced quantitative fingerprinting of proteins for diagnostic applications

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2025-03-11 DOI:10.1039/d4nr04797d
Afsaneh Orouji, Mahdi Ghamsari, Samira Abbasi-Moayed, Mahmood Akbari, Malik Maaza, Mohammad Reza Hormozi-Nezhad
{"title":"Gold nanorods as multidimensional optical nanomaterials: machine learning-enhanced quantitative fingerprinting of proteins for diagnostic applications","authors":"Afsaneh Orouji, Mahdi Ghamsari, Samira Abbasi-Moayed, Mahmood Akbari, Malik Maaza, Mohammad Reza Hormozi-Nezhad","doi":"10.1039/d4nr04797d","DOIUrl":null,"url":null,"abstract":"The rapid and precise quantification and identification of proteins as key diagnostic biomarkers hold significant promise in allergy testing, disease diagnosis, clinical treatment, and proteomics. This is crucial because alterations in disease-associated genetic information during pathogenesis often result in changes in protein types and levels. Therefore, the design of portable, fast, user-friendly, and affordable sensing platforms rather than a single-sensor-per-analyte strategy for multiplex protein detection is quite consequential. In the present research, a robust multicolorimetric probe based on the inhibited etching of gold nanorods (AuNRs) allowing unambiguous high-performance visual and spectral quantification and identification of proteins in human urine samples was designed. Most recently, we discovered that <em>N</em>-bromosuccinimide (NBS) can quickly etch AuNRs with a distinct color change, allowing convenient and accurate visual recognition of all amino acids. Herein, further explorations revealed that the presence of proteins, as amino acids’ polymers, reduces the effective concentration of NBS to different amounts and in turn prevents the etching of AuNRs to various degrees, thereby allowing precise quantification and identification of various proteins ranging from phosphatase (ACP), pepsin (Pep), hemoglobin (Hem), and transferrin (TRF) to immunoglobulin G (IgG), lysozyme (Lys), fibrinogen (Fib), and human serum albumin (HSA). The acquired dataset was statistically analyzed using linear discriminant analysis (LDA), partial least-squares regression (PLSR), and hierarchical cluster analysis (HCA) to accurately classify and identify individual proteins and their combinations at various levels. The multivariate regression models indicated that the colorimetric responses were linearly dependent on protein concentrations with low detection limits of around 1 ppm. Most importantly, the proposed multidimensional colorimetric probe was successfully utilized for protein discrimination in real urine samples. The diverse rainbow responses exhibited by the AuNRs in the proposed probe greatly enhance the accuracy of visual detection, making it a practical tool for straightforward protein monitoring in real samples.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"54 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr04797d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid and precise quantification and identification of proteins as key diagnostic biomarkers hold significant promise in allergy testing, disease diagnosis, clinical treatment, and proteomics. This is crucial because alterations in disease-associated genetic information during pathogenesis often result in changes in protein types and levels. Therefore, the design of portable, fast, user-friendly, and affordable sensing platforms rather than a single-sensor-per-analyte strategy for multiplex protein detection is quite consequential. In the present research, a robust multicolorimetric probe based on the inhibited etching of gold nanorods (AuNRs) allowing unambiguous high-performance visual and spectral quantification and identification of proteins in human urine samples was designed. Most recently, we discovered that N-bromosuccinimide (NBS) can quickly etch AuNRs with a distinct color change, allowing convenient and accurate visual recognition of all amino acids. Herein, further explorations revealed that the presence of proteins, as amino acids’ polymers, reduces the effective concentration of NBS to different amounts and in turn prevents the etching of AuNRs to various degrees, thereby allowing precise quantification and identification of various proteins ranging from phosphatase (ACP), pepsin (Pep), hemoglobin (Hem), and transferrin (TRF) to immunoglobulin G (IgG), lysozyme (Lys), fibrinogen (Fib), and human serum albumin (HSA). The acquired dataset was statistically analyzed using linear discriminant analysis (LDA), partial least-squares regression (PLSR), and hierarchical cluster analysis (HCA) to accurately classify and identify individual proteins and their combinations at various levels. The multivariate regression models indicated that the colorimetric responses were linearly dependent on protein concentrations with low detection limits of around 1 ppm. Most importantly, the proposed multidimensional colorimetric probe was successfully utilized for protein discrimination in real urine samples. The diverse rainbow responses exhibited by the AuNRs in the proposed probe greatly enhance the accuracy of visual detection, making it a practical tool for straightforward protein monitoring in real samples.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
Integrated Multimethod Approach for Size-Specific Assessment of Potentially Toxic Element Adsorption onto Micro‐ and Nanoplastics: Implications for Environmental Risk Gold nanorods as multidimensional optical nanomaterials: machine learning-enhanced quantitative fingerprinting of proteins for diagnostic applications Enhancing photocatalytic performance of F-doped TiO2 through the integration of small amounts of a quinoline-based covalent triazine framework High Supercapacitor Electrode Performance of Cu2ZnSnS4 (CZTS) Thin Films Grown by ECD UV-ozone surface pretreatment for high quality ALD-grown ultrathin coatings on bismuth oxyhalide photocatalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1