Assembly of Complex Colloidal Systems Using DNA

IF 30.7 1区 物理与天体物理 Q1 PHYSICS, CONDENSED MATTER Annual Review of Condensed Matter Physics Pub Date : 2025-03-10 DOI:10.1146/annurev-conmatphys-032922-113138
William M. Jacobs, W. Benjamin Rogers
{"title":"Assembly of Complex Colloidal Systems Using DNA","authors":"William M. Jacobs, W. Benjamin Rogers","doi":"10.1146/annurev-conmatphys-032922-113138","DOIUrl":null,"url":null,"abstract":"Nearly thirty years after its inception, the field of DNA-programmed colloidal self-assembly has begun to realize its initial promise. In this review, we summarize recent developments in designing effective interactions and understanding the dynamic self-assembly pathways of DNA-coated nanoparticles and microparticles, as well as how these advances have propelled tremendous progress in crystal engineering. We also highlight exciting new directions showing that new classes of subunits combining nanoparticles with DNA origami can be used to engineer novel multicomponent assemblies, including structures with self-limiting, finite sizes. We conclude by providing an outlook on how recent theoretical advances focusing on the kinetics of self-assembly could usher in new materials-design opportunities, like the possibility of retrieving multiple distinct target structures from a single suspension or accessing new classes of materials that are stabilized by energy dissipation, mimicking self-assembly in living systems.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"54 1","pages":""},"PeriodicalIF":30.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-032922-113138","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Nearly thirty years after its inception, the field of DNA-programmed colloidal self-assembly has begun to realize its initial promise. In this review, we summarize recent developments in designing effective interactions and understanding the dynamic self-assembly pathways of DNA-coated nanoparticles and microparticles, as well as how these advances have propelled tremendous progress in crystal engineering. We also highlight exciting new directions showing that new classes of subunits combining nanoparticles with DNA origami can be used to engineer novel multicomponent assemblies, including structures with self-limiting, finite sizes. We conclude by providing an outlook on how recent theoretical advances focusing on the kinetics of self-assembly could usher in new materials-design opportunities, like the possibility of retrieving multiple distinct target structures from a single suspension or accessing new classes of materials that are stabilized by energy dissipation, mimicking self-assembly in living systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用DNA组装复杂胶体系统
近三十年来,dna编程胶体自组装领域已经开始实现其最初的希望。在这篇综述中,我们总结了最近在设计有效的相互作用和理解dna包被纳米颗粒和微粒的动态自组装途径方面的进展,以及这些进展如何推动晶体工程的巨大进展。我们还强调了令人兴奋的新方向,表明结合纳米颗粒和DNA折纸的新型亚基可以用于设计新的多组分组件,包括具有自我限制的有限尺寸的结构。最后,我们展望了关注自组装动力学的最新理论进展如何带来新的材料设计机会,例如从单个悬浮液中检索多个不同目标结构的可能性,或者通过能量耗散来稳定的新型材料,模拟生命系统中的自组装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Condensed Matter Physics
Annual Review of Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
47.40
自引率
0.90%
发文量
27
期刊介绍: Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.
期刊最新文献
Optimal Control in Soft and Active Matter Modeling Granular Segregation: Insights from Four Decades of Research Fractional Quantum Anomalous Hall Effect Shear Mechanics of Articular Cartilage and Cartilage-Inspired Materials Full-Integer Topological Defects in Polar Active Matter: From Collective Migration to Tissue Patterning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1