Single-cell RNA-seq data have prevalent blood contamination but can be rescued by Originator, a computational tool separating single-cell RNA-seq by genetic and contextual information
Thatchayut Unjitwattana, Qianhui Huang, Yiwen Yang, Leyang Tao, Youqi Yang, Mengtian Zhou, Yuheng Du, Lana X. Garmire
{"title":"Single-cell RNA-seq data have prevalent blood contamination but can be rescued by Originator, a computational tool separating single-cell RNA-seq by genetic and contextual information","authors":"Thatchayut Unjitwattana, Qianhui Huang, Yiwen Yang, Leyang Tao, Youqi Yang, Mengtian Zhou, Yuheng Du, Lana X. Garmire","doi":"10.1186/s13059-025-03495-9","DOIUrl":null,"url":null,"abstract":"Single-cell RNA sequencing (scRNA-seq) data from complex human tissues have prevalent blood cell contamination during the sample preparation process. They may also comprise cells of different genetic makeups. We propose a new computational framework, Originator, which deciphers single cells by genetic origin and separates immune cells of blood contamination from those of expected tissue-resident cells. We demonstrate the accuracy of Originator at separating immune cells from the blood and tissue as well as cells of different genetic origins, using a variety of artificially mixed and real datasets, including pancreatic cancer and placentas as examples.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"40 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03495-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell RNA sequencing (scRNA-seq) data from complex human tissues have prevalent blood cell contamination during the sample preparation process. They may also comprise cells of different genetic makeups. We propose a new computational framework, Originator, which deciphers single cells by genetic origin and separates immune cells of blood contamination from those of expected tissue-resident cells. We demonstrate the accuracy of Originator at separating immune cells from the blood and tissue as well as cells of different genetic origins, using a variety of artificially mixed and real datasets, including pancreatic cancer and placentas as examples.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.