{"title":"Evaluating the reliability of geophysical methods for investigating the migration of a hydrocarbon plume: validation by sample analysis","authors":"Haitao Yu, Zhibin Liu, Min Song, Luqi Liu, Zhu Liu, Enwei Cao, Xuanran Zhao","doi":"10.1016/j.envpol.2025.126032","DOIUrl":null,"url":null,"abstract":"Geophysical methods are extensively used to assess contaminated sites. However, the validation of geophysical exploration results remains crucial for practical applications of these methods. In this study, Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) were used to investigate an abandoned hydrocarbon-contaminated site in Jiangsu, China. Dense survey lines were drawn across the contaminated site to generate continuous monitoring data. In addition, 20 boreholes were strategically drilled at identified anomalous points using geophysical methods. Multiple groundwater samples were analyzed from these boreholes and analyzed hydrocarbon concentrations. The obtained geophysical data were compared with groundwater data to assess the hydrocarbon extent and degree at the study site, as well as to evaluate the reliability of the geophysical survey results. The results demonstrated the effectiveness of continuous resistivity profiles in mapping the contaminant plume, showing consistent contaminant migration directions with the groundwater flow. The contaminant plume patterns obtained by interpolating groundwater sample contaminant concentrations were in line with the resistivity profiles. Groundwater samples from boreholes in high-resistivity zones exhibited higher hydrocarbon concentrations than corresponding regulatory limits. On the other hand, GPR successfully identified enhanced reflective signals associated with the presence of hydrocarbons, necessitating comprehensive interpretations that integrate these findings with resistivity results. The analysis results of unsatisfactory geophysical data in relation to the specific site conditions indicated that soil layer heterogeneity was the main source of anomalous electrical responses. This study validated the accuracy and efficiency of geophysical methods in investigating the migration of hydrocarbon plumes and assessing their contamination levels in groundwater.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"19 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2025.126032","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Geophysical methods are extensively used to assess contaminated sites. However, the validation of geophysical exploration results remains crucial for practical applications of these methods. In this study, Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) were used to investigate an abandoned hydrocarbon-contaminated site in Jiangsu, China. Dense survey lines were drawn across the contaminated site to generate continuous monitoring data. In addition, 20 boreholes were strategically drilled at identified anomalous points using geophysical methods. Multiple groundwater samples were analyzed from these boreholes and analyzed hydrocarbon concentrations. The obtained geophysical data were compared with groundwater data to assess the hydrocarbon extent and degree at the study site, as well as to evaluate the reliability of the geophysical survey results. The results demonstrated the effectiveness of continuous resistivity profiles in mapping the contaminant plume, showing consistent contaminant migration directions with the groundwater flow. The contaminant plume patterns obtained by interpolating groundwater sample contaminant concentrations were in line with the resistivity profiles. Groundwater samples from boreholes in high-resistivity zones exhibited higher hydrocarbon concentrations than corresponding regulatory limits. On the other hand, GPR successfully identified enhanced reflective signals associated with the presence of hydrocarbons, necessitating comprehensive interpretations that integrate these findings with resistivity results. The analysis results of unsatisfactory geophysical data in relation to the specific site conditions indicated that soil layer heterogeneity was the main source of anomalous electrical responses. This study validated the accuracy and efficiency of geophysical methods in investigating the migration of hydrocarbon plumes and assessing their contamination levels in groundwater.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.