Handling temporal correlated noise in large-scale global GNSS processing

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geodesy Pub Date : 2025-03-10 DOI:10.1007/s00190-025-01946-6
Patrick Dumitraschkewitz, Torsten Mayer-Gürr
{"title":"Handling temporal correlated noise in large-scale global GNSS processing","authors":"Patrick Dumitraschkewitz, Torsten Mayer-Gürr","doi":"10.1007/s00190-025-01946-6","DOIUrl":null,"url":null,"abstract":"<p>Global Navigation Satellite System (GNSS) products are an integral part of a wide range of scientific and commercial applications. The creation of such products requires processing software capable of solving a combined station position and GNSS satellite orbit estimation by least squares adjustment, also known as global GNSS processing. Such processing is routinely performed by the International GNSS Service (IGS) and its Analysis Centers. For the IGS Reprocessing Campaign 3 (repro3), Graz University of Technology (TUG) participated as an AC using the raw observation approach, which uses all measurements as observed by the receivers. However, a common feature of almost all global multi-GNSS processing strategies is the use of diagonal covariance matrices as stochastic models for simplicity. This implies that any spatial or temporal correlations are ignored. However, numerous studies have shown that GNSS processing is indeed affected by spatial and temporal correlations. For global GNSS processing, research on stochastic modeling and its challenges is rather scarce. In this work, a detailed insight into the problems of stochastic modeling in global GNSS processing using the raw observation approach is given along with a detailed overview of the intended TUG approach. An analysis of the impact of temporal correlation modeling on the resulting GNSS products and GNSS frame estimation is also given.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"192 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-025-01946-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Global Navigation Satellite System (GNSS) products are an integral part of a wide range of scientific and commercial applications. The creation of such products requires processing software capable of solving a combined station position and GNSS satellite orbit estimation by least squares adjustment, also known as global GNSS processing. Such processing is routinely performed by the International GNSS Service (IGS) and its Analysis Centers. For the IGS Reprocessing Campaign 3 (repro3), Graz University of Technology (TUG) participated as an AC using the raw observation approach, which uses all measurements as observed by the receivers. However, a common feature of almost all global multi-GNSS processing strategies is the use of diagonal covariance matrices as stochastic models for simplicity. This implies that any spatial or temporal correlations are ignored. However, numerous studies have shown that GNSS processing is indeed affected by spatial and temporal correlations. For global GNSS processing, research on stochastic modeling and its challenges is rather scarce. In this work, a detailed insight into the problems of stochastic modeling in global GNSS processing using the raw observation approach is given along with a detailed overview of the intended TUG approach. An analysis of the impact of temporal correlation modeling on the resulting GNSS products and GNSS frame estimation is also given.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
期刊最新文献
Optimized gravity field retrieval for the MAGIC mission concept using background model uncertainty information Stochastic modelling of polyhedral gravity signal variations. Part I: First-order derivatives of gravitational potential Handling temporal correlated noise in large-scale global GNSS processing IAG newsletter Downscaling GRACE-derived ocean bottom pressure anomalies using self-supervised data fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1