Effective binding sufficiently-small SiO2 nanoparticles within carbon nanosheets framework enables a high-performing and durable anode for lithium-ion batteries

IF 9.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materiomics Pub Date : 2025-03-10 DOI:10.1016/j.jmat.2025.101053
Zhefei Sun , Zhiwen Zhang , Shenghui Zhou , Weicheng Liu , Jianhui Liu , Quanzhi Yin , Jianhai Pan , Xiaoyu Wu , Zilong Zhuang , Dong-Liang Peng , Qiaobao Zhang
{"title":"Effective binding sufficiently-small SiO2 nanoparticles within carbon nanosheets framework enables a high-performing and durable anode for lithium-ion batteries","authors":"Zhefei Sun ,&nbsp;Zhiwen Zhang ,&nbsp;Shenghui Zhou ,&nbsp;Weicheng Liu ,&nbsp;Jianhui Liu ,&nbsp;Quanzhi Yin ,&nbsp;Jianhai Pan ,&nbsp;Xiaoyu Wu ,&nbsp;Zilong Zhuang ,&nbsp;Dong-Liang Peng ,&nbsp;Qiaobao Zhang","doi":"10.1016/j.jmat.2025.101053","DOIUrl":null,"url":null,"abstract":"<div><div>Silica (SiO<sub>2</sub>), with its high theoretical capacity and abundance, holds great potential as anode material for lithium-ion batteries (LIBs). However, its practical application is hindered by inherently low conductivity and significant volume change during cycling. In this work, we present a simple yet effective strategy to address these challenges by homogeneously binding high-density, ultra-small SiO<sub>2</sub> nanoparticles within a carbon nanosheet framework (denoted as SiO<sub>2</sub>@CNS). In this design, densely packed sufficiently-small SiO<sub>2</sub> nanoparticles (about 6 nm) ensure high electrochemical reactivity, while the conductive and flexible CNS matrix facilitates rapid ion/electron transfer and buffers volume changes during cycling. As a result, the SiO<sub>2</sub>@CNS anode delivers a remarkable capacity of 607.3 mA⸱h/g after 200 cycles at 0.1 A/g, superior rate capability (407.4 mA⸱h/g at 2 A/g) and outstanding durability, retaining 93.1% of its capacity after 2000 cycles at 1 A/g. <em>In-situ</em> transmission electron microscopy and <em>ex-situ</em> microscopic and spectroscopic analyses reveal moderate volume variation and exceptional structural stability during cycling, supported by the formation of a robust solid-electrolyte interphase that underpins its long-lasting performance. Full cells paired with commercial LiFePO<sub>4</sub> cathode exhibit outstanding rate and cycling performance. This work provides valuable insights into developing highly-efficient SiO<sub>2</sub>-based anodes for high-performance LIBs.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 5","pages":"Article 101053"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847825000437","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Silica (SiO2), with its high theoretical capacity and abundance, holds great potential as anode material for lithium-ion batteries (LIBs). However, its practical application is hindered by inherently low conductivity and significant volume change during cycling. In this work, we present a simple yet effective strategy to address these challenges by homogeneously binding high-density, ultra-small SiO2 nanoparticles within a carbon nanosheet framework (denoted as SiO2@CNS). In this design, densely packed sufficiently-small SiO2 nanoparticles (about 6 nm) ensure high electrochemical reactivity, while the conductive and flexible CNS matrix facilitates rapid ion/electron transfer and buffers volume changes during cycling. As a result, the SiO2@CNS anode delivers a remarkable capacity of 607.3 mA⸱h/g after 200 cycles at 0.1 A/g, superior rate capability (407.4 mA⸱h/g at 2 A/g) and outstanding durability, retaining 93.1% of its capacity after 2000 cycles at 1 A/g. In-situ transmission electron microscopy and ex-situ microscopic and spectroscopic analyses reveal moderate volume variation and exceptional structural stability during cycling, supported by the formation of a robust solid-electrolyte interphase that underpins its long-lasting performance. Full cells paired with commercial LiFePO4 cathode exhibit outstanding rate and cycling performance. This work provides valuable insights into developing highly-efficient SiO2-based anodes for high-performance LIBs.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在碳纳米片框架内有效结合足够小的SiO2纳米颗粒可以为锂离子电池提供高性能和耐用的阳极
二氧化硅(SiO2)具有较高的理论容量和丰度,作为锂离子电池(LIBs)的负极材料具有很大的潜力。然而,它的实际应用受到固有的低电导率和循环过程中显着的体积变化的阻碍。在这项工作中,我们提出了一种简单而有效的策略,通过在碳纳米片框架内均匀结合高密度,超小SiO2纳米颗粒(表示为SiO2@CNS)来解决这些挑战。在该设计中,密集排列的足够小的SiO2纳米颗粒(约6 nm)确保了高电化学反应性,而导电和柔性的CNS基质促进了离子/电子的快速转移,并缓冲了循环过程中的体积变化。结果,SiO2@CNS阳极在0.1 a /g下循环200次后提供了607.3 mA⸱h/g的显着容量,优越的倍率能力(407.4 mA⸱h/g, 2 a /g)和出色的耐久性,在1 a /g下循环2000次后保持了93.1%的容量。原位透射电子显微镜和非原位显微镜和光谱分析显示,在循环过程中,适度的体积变化和特殊的结构稳定性,由坚固的固体电解质界面的形成支持,支撑其持久的性能。与商用LiFePO4阴极配对的全电池具有出色的倍率和循环性能。这项工作为开发用于高性能lib的高效sio2基阳极提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
期刊最新文献
Force-driven ionic transfer in dual-charge MXene membranes for self-powered linear pressure sensing Narrowband green emission in CaF2: U6+ phosphors via dynamic F–O coordination and defect synergy Achieving enhanced piezoelectric performance in three-dimensional interconnected BCZT piezoelectric porous ceramics Advances in MXene-based materials for high-sulfur-loading lithium–sulfur batteries Beyond sintering: emerging low-temperature strategies for functional ceramics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1