Broadband microwave-rate dark pulse microcombs in dissipation-engineered LiNbO3 microresonators

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-03-10 DOI:10.1038/s41467-025-57736-3
Xiaomin Lv, Binbin Nie, Chen Yang, Rui Ma, Ze Wang, Yanwu Liu, Xing Jin, Kaixuan Zhu, Zhenyu Chen, Du Qian, Guanyu Zhang, Guowei Lv, Qihuang Gong, Fang Bo, Qi-Fan Yang
{"title":"Broadband microwave-rate dark pulse microcombs in dissipation-engineered LiNbO3 microresonators","authors":"Xiaomin Lv, Binbin Nie, Chen Yang, Rui Ma, Ze Wang, Yanwu Liu, Xing Jin, Kaixuan Zhu, Zhenyu Chen, Du Qian, Guanyu Zhang, Guowei Lv, Qihuang Gong, Fang Bo, Qi-Fan Yang","doi":"10.1038/s41467-025-57736-3","DOIUrl":null,"url":null,"abstract":"<p>Kerr microcombs generated in optical microresonators provide broadband light sources bridging optical and microwave signals. Their translation to thin-film lithium niobate unlocks second-order nonlinear optical interfaces such as electro-optic modulation and frequency doubling for completing comb functionalities. However, the strong Raman response of LiNbO<sub>3</sub> has complicated the formation of Kerr microcombs. Until now, dark pulse microcombs, requiring a double balance between Kerr nonlinearity and normal group velocity dispersion as well as gain and loss, have remained elusive in LiNbO<sub>3</sub> microresonators. Here, by incorporating dissipation engineering, we demonstrate dark pulse microcombs with 25 GHz repetition frequency and 200 nm span in a high-<i>Q</i> LiNbO<sub>3</sub> microresonator. Resonances near the Raman-active wavelengths are strongly damped by controlling phase-matching conditions of a specially designed pulley coupler. The coherence and tunability of the dark pulse microcombs are also investigated. Our work provides a solution to realize high-power microcombs operating at microwave rates on LiNbO<sub>3</sub> chips, promising new opportunities for the monolithic integration of applications spanning communication to microwave photonics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"31 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57736-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Kerr microcombs generated in optical microresonators provide broadband light sources bridging optical and microwave signals. Their translation to thin-film lithium niobate unlocks second-order nonlinear optical interfaces such as electro-optic modulation and frequency doubling for completing comb functionalities. However, the strong Raman response of LiNbO3 has complicated the formation of Kerr microcombs. Until now, dark pulse microcombs, requiring a double balance between Kerr nonlinearity and normal group velocity dispersion as well as gain and loss, have remained elusive in LiNbO3 microresonators. Here, by incorporating dissipation engineering, we demonstrate dark pulse microcombs with 25 GHz repetition frequency and 200 nm span in a high-Q LiNbO3 microresonator. Resonances near the Raman-active wavelengths are strongly damped by controlling phase-matching conditions of a specially designed pulley coupler. The coherence and tunability of the dark pulse microcombs are also investigated. Our work provides a solution to realize high-power microcombs operating at microwave rates on LiNbO3 chips, promising new opportunities for the monolithic integration of applications spanning communication to microwave photonics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Transient power-law behaviour following induction distinguishes between competing models of stochastic gene expression Integrating photochemical and photothermal effects for selective oxidative coupling of methane into C2+ hydrocarbons with multiple active sites Serum VEGF-A as a biomarker for the addition of bevacizumab to chemo-immunotherapy in metastatic NSCLC Bacterial cell wall-specific nanomedicine for the elimination of Staphylococcus aureus and Pseudomonas aeruginosa through electron-mechanical intervention Enantiopure synthesis of [5]helicene based molecular lemniscates and their use in chiroptical materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1