Xiaomin Lv, Binbin Nie, Chen Yang, Rui Ma, Ze Wang, Yanwu Liu, Xing Jin, Kaixuan Zhu, Zhenyu Chen, Du Qian, Guanyu Zhang, Guowei Lv, Qihuang Gong, Fang Bo, Qi-Fan Yang
{"title":"Broadband microwave-rate dark pulse microcombs in dissipation-engineered LiNbO3 microresonators","authors":"Xiaomin Lv, Binbin Nie, Chen Yang, Rui Ma, Ze Wang, Yanwu Liu, Xing Jin, Kaixuan Zhu, Zhenyu Chen, Du Qian, Guanyu Zhang, Guowei Lv, Qihuang Gong, Fang Bo, Qi-Fan Yang","doi":"10.1038/s41467-025-57736-3","DOIUrl":null,"url":null,"abstract":"<p>Kerr microcombs generated in optical microresonators provide broadband light sources bridging optical and microwave signals. Their translation to thin-film lithium niobate unlocks second-order nonlinear optical interfaces such as electro-optic modulation and frequency doubling for completing comb functionalities. However, the strong Raman response of LiNbO<sub>3</sub> has complicated the formation of Kerr microcombs. Until now, dark pulse microcombs, requiring a double balance between Kerr nonlinearity and normal group velocity dispersion as well as gain and loss, have remained elusive in LiNbO<sub>3</sub> microresonators. Here, by incorporating dissipation engineering, we demonstrate dark pulse microcombs with 25 GHz repetition frequency and 200 nm span in a high-<i>Q</i> LiNbO<sub>3</sub> microresonator. Resonances near the Raman-active wavelengths are strongly damped by controlling phase-matching conditions of a specially designed pulley coupler. The coherence and tunability of the dark pulse microcombs are also investigated. Our work provides a solution to realize high-power microcombs operating at microwave rates on LiNbO<sub>3</sub> chips, promising new opportunities for the monolithic integration of applications spanning communication to microwave photonics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"31 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57736-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Kerr microcombs generated in optical microresonators provide broadband light sources bridging optical and microwave signals. Their translation to thin-film lithium niobate unlocks second-order nonlinear optical interfaces such as electro-optic modulation and frequency doubling for completing comb functionalities. However, the strong Raman response of LiNbO3 has complicated the formation of Kerr microcombs. Until now, dark pulse microcombs, requiring a double balance between Kerr nonlinearity and normal group velocity dispersion as well as gain and loss, have remained elusive in LiNbO3 microresonators. Here, by incorporating dissipation engineering, we demonstrate dark pulse microcombs with 25 GHz repetition frequency and 200 nm span in a high-Q LiNbO3 microresonator. Resonances near the Raman-active wavelengths are strongly damped by controlling phase-matching conditions of a specially designed pulley coupler. The coherence and tunability of the dark pulse microcombs are also investigated. Our work provides a solution to realize high-power microcombs operating at microwave rates on LiNbO3 chips, promising new opportunities for the monolithic integration of applications spanning communication to microwave photonics.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.