Analytical Approach to Distinguishing Lactate Dehydrogenase Fractions for Oncological Diagnostics

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL Analytica Chimica Acta Pub Date : 2025-03-11 DOI:10.1016/j.aca.2025.343921
Justyna GŁOWACKA-GUDANEK, Kamil GRYCKIEWICZ, Kamil STRZELAK
{"title":"Analytical Approach to Distinguishing Lactate Dehydrogenase Fractions for Oncological Diagnostics","authors":"Justyna GŁOWACKA-GUDANEK, Kamil GRYCKIEWICZ, Kamil STRZELAK","doi":"10.1016/j.aca.2025.343921","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>One of the crucial enzymes for cancer cell growth is lactate dehydrogenase (LDH, E.C. 1.1.1.27), an oxidoreductase that catalyzes the conversion between pyruvate and lactate. It has been found that in cancer cells metabolism, the LDH isoenzyme profile changes, with forms rich in the muscle-type subunit beginning to dominate over those in which the heart-type predominates. This suggests that by examining changes in the enzymatic activity of isoforms with a specific subunit content, it may be possible to quickly distinguish a physiological sample from a pathological one.<h3>Results</h3>This article focuses on the development of an analytical strategy that enables the estimation of the ratio of LDH fraction activities as a basis for a simple and quick screening test. Spectrophotometric detection of LDH activity is based on the ferrozine photometric reaction with ferrous ions generated during the biocatalytic reduction of ferric ions by NADH. The developed Multicommutated Flow Analysis (MCFA) system, coupled with an optoelectronic flow-through detector, enables the use of a kinetic method based on the inhibition of LDH subunits to monitor the enzyme reaction kinetics. The distinctly different responses of the muscle-type and heart-type subunits to the selected inhibitors revealed a linear relationship between the obtained analytical signal and the percentage content of each subunit. The calibration curves for selected inhibitors are linear within the tested range of standards with coefficients of determination equal to 0.99 each.<h3>Significance</h3>The developed MCFA system was utilized in the analysis of human serum samples obtained from both healthy patients and patients with cancer. The analysis demonstrates that the proposed approach can differentiate oncological serum samples from reference ones based on the LDH fractions activity ratio, even when their total LDH activity level is low.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"54 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.343921","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

One of the crucial enzymes for cancer cell growth is lactate dehydrogenase (LDH, E.C. 1.1.1.27), an oxidoreductase that catalyzes the conversion between pyruvate and lactate. It has been found that in cancer cells metabolism, the LDH isoenzyme profile changes, with forms rich in the muscle-type subunit beginning to dominate over those in which the heart-type predominates. This suggests that by examining changes in the enzymatic activity of isoforms with a specific subunit content, it may be possible to quickly distinguish a physiological sample from a pathological one.

Results

This article focuses on the development of an analytical strategy that enables the estimation of the ratio of LDH fraction activities as a basis for a simple and quick screening test. Spectrophotometric detection of LDH activity is based on the ferrozine photometric reaction with ferrous ions generated during the biocatalytic reduction of ferric ions by NADH. The developed Multicommutated Flow Analysis (MCFA) system, coupled with an optoelectronic flow-through detector, enables the use of a kinetic method based on the inhibition of LDH subunits to monitor the enzyme reaction kinetics. The distinctly different responses of the muscle-type and heart-type subunits to the selected inhibitors revealed a linear relationship between the obtained analytical signal and the percentage content of each subunit. The calibration curves for selected inhibitors are linear within the tested range of standards with coefficients of determination equal to 0.99 each.

Significance

The developed MCFA system was utilized in the analysis of human serum samples obtained from both healthy patients and patients with cancer. The analysis demonstrates that the proposed approach can differentiate oncological serum samples from reference ones based on the LDH fractions activity ratio, even when their total LDH activity level is low.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
期刊最新文献
Analytical Approach to Distinguishing Lactate Dehydrogenase Fractions for Oncological Diagnostics Ultrasensitive electrochemical sensor for lipopolysaccharide detection catalyzed by perylene-3,4,9,10-tetracarboxylic acid diimide Mapping human fingerprint beyond level-3 based on an amphiphilic aggregation-induced emission luminogen and the construction of intelligent platform for personal identification Hand in Hand Catalytic Hairpin Assembly-Based FÖrster Resonance Energy Transfer Biosensor for Simultaneous Detection of Multiple MicroRNAs from Breast Cancer A washing-less biosensor based on the dual functions of magnetic separation and signal output of magnetic nanoparticles for the rapid and visual detection of enrofloxacin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1