Will biohybrid or tandem CO2 electrolysis prevail?

IF 11.5 Q1 CHEMISTRY, PHYSICAL Chem Catalysis Pub Date : 2025-03-11 DOI:10.1016/j.checat.2025.101322
Keoni Young, Sophie Kochanek, Gavin Silveira, Joshua Jack
{"title":"Will biohybrid or tandem CO2 electrolysis prevail?","authors":"Keoni Young, Sophie Kochanek, Gavin Silveira, Joshua Jack","doi":"10.1016/j.checat.2025.101322","DOIUrl":null,"url":null,"abstract":"Electrified CO<sub>2</sub> conversion into sustainable multicarbon products is a key component in reshaping the carbon cycle and achieving carbon neutrality goals. Recent discoveries have led to the advent of biohybrid and tandem CO<sub>2</sub> electrolysis processes, which have now surfaced among the most promising methods to convert waste CO<sub>2</sub> into valuable C2+ products like hydrocarbons and oxygenates. However, limited analysis has so far been devoted to understanding and comparing the synergies between these two emerging platforms. In this perspective, we explore the technical feasibility of these technologies to identify their best near-term applications and unique operational challenges. We begin by assessing their state-of-the-art performance using key figures of merit. We then provide initial life-cycle assessment and technoeconomic calculations, comparing their value propositions and carbon footprints. Altogether, this technical evaluation can inform the design and implementation of new multistage CO<sub>2</sub> conversion processes and provide insights toward a future circularized carbon economy.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"53 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrified CO2 conversion into sustainable multicarbon products is a key component in reshaping the carbon cycle and achieving carbon neutrality goals. Recent discoveries have led to the advent of biohybrid and tandem CO2 electrolysis processes, which have now surfaced among the most promising methods to convert waste CO2 into valuable C2+ products like hydrocarbons and oxygenates. However, limited analysis has so far been devoted to understanding and comparing the synergies between these two emerging platforms. In this perspective, we explore the technical feasibility of these technologies to identify their best near-term applications and unique operational challenges. We begin by assessing their state-of-the-art performance using key figures of merit. We then provide initial life-cycle assessment and technoeconomic calculations, comparing their value propositions and carbon footprints. Altogether, this technical evaluation can inform the design and implementation of new multistage CO2 conversion processes and provide insights toward a future circularized carbon economy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
期刊最新文献
Will biohybrid or tandem CO2 electrolysis prevail? Ensembled Ptδ+ species on Beta zeolites for efficient preferential oxidation of CO in H2 Durability of PGM catalyst MEAs of polymer electrolyte membrane fuel cells for heavy-duty vehicles Zeolite composite prepared by quasi-in situ interzeolite conversion approach Artificial manganese nanozyme for nonradical activation of periodate toward pH-universal water decontamination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1