Chan Hee Kim, Kue-Young Kim*, Gidon Han, Min-Kyung Jeon, Yong-Chan Park, Weon Shik Han and Jae-Hong Lim,
{"title":"Enhancement of Storage Efficiency during Carbon Dioxide Sequestration in Depleted Reservoirs","authors":"Chan Hee Kim, Kue-Young Kim*, Gidon Han, Min-Kyung Jeon, Yong-Chan Park, Weon Shik Han and Jae-Hong Lim, ","doi":"10.1021/acs.estlett.4c0110110.1021/acs.estlett.4c01101","DOIUrl":null,"url":null,"abstract":"<p >Carbon capture and storage (CCS) is crucial for mitigating atmospheric carbon dioxide (CO<sub>2</sub>) levels in the clean energy transition. Depleted hydrocarbon reservoirs, with their proven containment integrity, are promising candidates for CO<sub>2</sub> storage. However, maximizing pore space utilization to enhance storage capacity remains underexplored, particularly in depleted reservoirs where CO<sub>2</sub> transitions from gas to supercritical state during injection and storage. We experimentally investigated the impact of surfactants on CO<sub>2</sub> storage dynamics at the microscale using synchrotron-based high-resolution 3D microcomputed tomography. Experiments were conducted at pressures ranging from 6 to 16 MPa, and a constant temperature of 80 °C, covering both gas and supercritical phases of CO<sub>2</sub>. Surfactants significantly reduced CO<sub>2</sub>-brine interfacial tension (IFT) and created new flow paths through small pores, increasing CO<sub>2</sub> saturation by 30% at 6 MPa. Although surfactant effectiveness decreased at higher pressures, it still enhanced storage efficiency by 12%, 14%, and 17% at 8, 12, and 16 MPa, respectively. These findings highlight the potential of surfactant-assisted CO<sub>2</sub> storage to optimize injection strategies, thereby contributing to more efficient utilization of depleted reservoirs. By improving storage efficiency, this approach supports global efforts to achieve substantial reductions in CO<sub>2</sub> emissions and combat climate change.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"12 3","pages":"269–275 269–275"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c01101","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon capture and storage (CCS) is crucial for mitigating atmospheric carbon dioxide (CO2) levels in the clean energy transition. Depleted hydrocarbon reservoirs, with their proven containment integrity, are promising candidates for CO2 storage. However, maximizing pore space utilization to enhance storage capacity remains underexplored, particularly in depleted reservoirs where CO2 transitions from gas to supercritical state during injection and storage. We experimentally investigated the impact of surfactants on CO2 storage dynamics at the microscale using synchrotron-based high-resolution 3D microcomputed tomography. Experiments were conducted at pressures ranging from 6 to 16 MPa, and a constant temperature of 80 °C, covering both gas and supercritical phases of CO2. Surfactants significantly reduced CO2-brine interfacial tension (IFT) and created new flow paths through small pores, increasing CO2 saturation by 30% at 6 MPa. Although surfactant effectiveness decreased at higher pressures, it still enhanced storage efficiency by 12%, 14%, and 17% at 8, 12, and 16 MPa, respectively. These findings highlight the potential of surfactant-assisted CO2 storage to optimize injection strategies, thereby contributing to more efficient utilization of depleted reservoirs. By improving storage efficiency, this approach supports global efforts to achieve substantial reductions in CO2 emissions and combat climate change.
期刊介绍:
Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.