Per- and polyfluoroalkyl substances (PFAS) are persistent environmental contaminants found in groundwater sources and a wide variety of consumer products. In recent years, electrochemical approaches for the degradation of these harmful contaminants have garnered a significant amount of attention due to their efficiency and chemical-free modular nature. However, these electrochemical processes occur in open, highly non-equilibrium systems, and a detailed understanding of PFAS degradation mechanisms in these promising technologies is still in its infancy. To shed mechanistic insight into these complex processes, we present the first constant-electrode potential (CEP) quantum calculations of PFAS degradation on electrified surfaces. These advanced CEP calculations provide new mechanistic details about the intricate electronic processes that occur during PFAS degradation in the presence of an electrochemical bias, which cannot be gleaned from conventional density functional theory calculations. We complement our CEP calculations with large-scale ab initio molecular dynamics simulations in the presence of an electrochemical bias to provide time scales for PFAS degradation on electrified surfaces. Taken together, our CEP-based quantum calculations provide critical reaction mechanisms for PFAS degradation in open electrochemical systems, which can be used to prescreen candidate material surfaces and optimal electrochemical conditions for remediating PFAS and other environmental contaminants.